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Abstract
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1 Introduction

Controlling tail risk is a key ingredient in modern risk management and financial

regulation. As such, there has been a substantial amount of research on how to

measure the tail risk, how to assess the quality of the measures, and how to use the

measures in various contexts. For example, the axiomatic foundations and theoretical

properties of (tail) risk measures such as Value-at-Risk (VaR), expected shortfall (ES),

and their generalizations are studied by Cont et al. (2013), Kou et al. (2013), Kou

and Peng (2016), Wang and Zitikis (2021), and Liu and Wang (2021), and reviewed

in He et al. (2022). The backtest procedures for assessment and comparison of risk

measures are considered by Nolde and Ziegel (2017), Du and Escanciano (2017), and

Du et al. (2024). A capital adequacy test for banking regulation based on VaR are

studied by He and Peng (2018).

In practice, true risk measures are not observed, and we need to estimate them to

be used in practice. McNeil et al. (2005, pp. 40–41) warned the danger of a naive use

of estimated risk, pointing out that it is subject to the problems of estimation error,

model risk, and market liquidity. The problem of estimation error is that the sampling

error of the estimated risk may distort the desired characteristics of the risk measure.

The problem of model risk arises when the postulated model is largely misspecified

and its estimates are misleading or useless. The problem of market liquidity comes

from the fact that liquidation incurs transaction costs and an asset changes its price

in the process of liquidation; thus, the asset worth $1 may not convert to $1 in hand.

The literature developed various methods to account for these issues. For model

risk, Stahl (1997) argued that multiplying 3 to VaR hedges against the model un-

certainty using Chebyshev’s inequality;1 Leippold and Vanini (2002) showed that for

ES, the multiplier for model risk can be lowered to 1.5; see also Hendricks and Hirtle

(1997), Lopez (1998), and Novak (2010). Blanchet and Murthy (2019) provided a

general method to bound the risk measures to account for model risk using optimal

transport. Zhu and Fukushima (2009) and Li (2018) discussed derivation and the

use of worst-case risk measures when we only have partial information for the loss

distribution. For the liquidity problem, many institutions use “liquidity-adjusted”

VaR that takes into account realistic holding periods; Gârleanu and Pedersen (2007)

analyzed the feedback effect of such practice; Adrian and Brunnermeier (2016) pro-

1Stahl’s (1997) justification was retrospective, after Basel II employed the multiplier of 3.
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posed a measure of systemic risk that subsumes liquidity risk; Elsinger et al. (2006)

and Capponi and Rubtsov (2022) analyzed models to capture systemic tail risks in

respective contexts. Embrechts et al. (2015) introduced a notion of robustness to

deal with model uncertainty in risk aggregation. An optimal liquidation strategy is

studied by Min et al. (2022).

For estimation risk, various portfolio optimization problems are known to be vul-

nerable to estimation error (Michaud, 1989; Chopra and Ziemba, 1993; Lima et al.,

2011), and methods to integrate estimation error into the portfolio optimization prob-

lems are proposed (Ceria and Stubbs, 2006; Michaud and Michaud, 2008). Du and

Escanciano (2017) and Nolde and Ziegel (2017) developed backtesting procedures to

assess and compare the accuracy of different risk estimates. Cont et al. (2010) consid-

ered a “risk measurement procedure” that encompasses both the measurement of risk

and the choice of risk measure, and studied the robustness and sensitivity properties.

Casellina et al. (2023) used Monte Carlo simulation of the asymptotic single risk fac-

tor model to quantify the bias of VaR estimates for banking regulations. There is also

vast literature on estimation and inference for risk measures (Embrechts et al., 1997;

Fan and Gu, 2003; Gao and Song, 2008; Chun et al., 2012; Jin et al., 2003; Jiang and

Kou, 2021; Beutner et al., 2024, among many others).

However, a generic way to recover the desired risk guarantee with estimated risk

seems missing. For example, the regulator may require banks to compute not only

the 99% VaR but also its confidence interval, but how should the banks use that in-

formation to uphold the “guarantee” that the probability of insolvency is capped by

1%? This paper proposes a general method to incorporate estimation error into tail

risk control problems that comes with a guarantee of this type. Under the assumption

that a valid confidence interval is available for the risk measure, we provide a simple

method to bound the true unobservable risk probability using an observable risk es-

timate. Our method applies to risk measures that aim to control the probability of

undesirable events, and we show that VaR and ES—arguably the two most popular

regulatory risk measures—are contained as special cases.

The main idea of the paper is best illustrated in the specific case of VaR. In

particular, the VaR is defined as the maximum loss that can be incurred with a user-

specified probability 1 − p. For example, if we let X be the random variable that

represents the asset value of an institution, the VaR is given by the smallest value of

3



C that satisfies P (−X > C) ≤ p.2 The idea of “controlling VaR” is to maintain the

capital reserve of C so that the institution stays solvent with probability at least 1−p

when X realizes. We denote such C as VaRp and call it the VaR of coverage 1− p.3

We call the event −X > C the risk event, and its probability the risk probability.

The “risk guarantee” put forward by VaR is, therefore, that the probability of this

risk event −X > VaRp is bound to be at most p.

The problem of estimation error is that, when the VaR is replaced by its estimate

V̂aRp, we no longer have P (−X > V̂aRp) ≤ p as a theoretical guarantee. In fact,

we demonstrate in Section 2 that the actual coverage is distorted, that is, the left-

hand side (LHS) is strictly greater than p when we use a naive VaR estimate.4 This

distortion can be aggravated when we consider a very small value of p, e.g., when we

wish to control the chance of a catastrophic event such as financial crisis.

Our idea is to “allot” the risk probability allowance p for two undesirable events

separately: (1) the loss exceeds the VaR and (2) the estimated VaR underestimates

the true VaR. Let p = q+r be a user-specified allocation of p, and suppose that a one-

sided (1− r)-confidence interval for VaRq is available, that is, P (VaRq > ṼaRq,r) ≤ r

holds for some observable quantity ṼaRq,r. Then, by the Bonferroni inequality, we

have P (−X > ṼaRq,r) ≤ P (−X > VaRq) + P (VaRq > ṼaRq,r) ≤ q + r = p.

This is because, when the event −X > ṼaRq,r takes place, we have that either (1)

−X > VaRq or (2) VaRq > ṼaRq,r must take place. Note that the LHS does not

depend on the unknown, VaRq, but only on the observable, ṼaRq,r. Therefore, by

holding the capital worth ṼaRq,r, we can make sure that the actual risk probability is

capped by p, including the sampling variation of ṼaRq,r. A legitimate concern here is

that the Bonferroni inequality is known to be a “loose” bound. To address this point,

we demonstrate in the empirical application in Section 4 that ṼaRq,r is only modestly

larger than a naive estimate V̂aRp, roughly by 10–50%. Also, we give a practical

recommendation of the allocation (q, r) that is not conservative asymptotically so

that no allowance is wasted when we have a large dataset to estimate VaR precisely.

We show that the above technique extends to other risk measures that aim to control

the probability of various unwanted events.

2The C that attains the equality P (−X > C) = p may not exist if the distribution of X is
discrete.

3This 1− p is often called the “confidence level” in the literature, but because we deal with the
“confidence interval” of the risk measure, we adopt a different term to forestall needless confusion.

4Casellina et al. (2023) also observed such systematic bias in risk probability.
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This paper adds to the long history of concerns on estimation error in risk control

(Jorion, 1996; Hendricks, 1996; Pritsker, 1997, 2006; Barone-Adesi and Giannopou-

los, 2001; Berkowitz and O’Brien, 2002; Aussenegg and Miazhynskaia, 2006; Thiele,

2019). Chen (2008) noted that the effective sample size for ES at confidence level

1− p is the actual sample size times p2, stating that the estimate’s high volatility is a

common challenge for statistical inference. Caccioli et al. (2018) noted that because

of high dimensionality of institutional portfolios and the lack of long-run stationarity,

portfolio optimization is plagued by (relatively) small sample sizes. Given the statis-

tical difficulty inherent in tail risks, Deo and Murthy (2020) proposed an importance

sampling method to consistently approximate ES-based objectives for heavy-tailed

distributions. The estimation risk and model risk are considered in a unified opti-

mization framework in portfolio management and related contexts (El Ghaoui et al.,

2003; Chen et al., 2007; Natarajan et al., 2008, 2009).

This paper is organized as follows. Section 2 presents a simulation exercise that

demonstrates that the estimation error acts adversely to risk control. Section 3 defines

the class of tail risk measures and develops a simple method to control the true risk

probability using an observable quantity. Section 4 applies our method to an empirical

application of controlling VaR and ES in a stylized investment problem and compares

our risk estimates against naive estimates. Section 5 concludes. Appendix A provides

additional simulation results to supplement Section 2.

2 Failure to Control Tail Risk due to Estimation

Error

The defining feature of VaR is that the probability of a loss exceeding the VaR is

bounded at a desired level, P (−X > VaRp) ≤ p. We show, however, that if we sub-

stitute the VaR with an estimator, the actual risk probability can be larger than the

proclaimed level p, building on a generalized autoregressive conditional heteroskedas-

ticity (GARCH) model that has gained strong empirical support for capturing volatil-

ity in financial returns (Bollerslev et al., 1992; Engle and Patton, 2007).5

The setup of the simulation is as follows. First, we draw T = 200 observations

5Simulation of i.i.d. returns exhibits the same problem. See Kaji (2018) for details.
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(a) Nonparametric estimator of VaR for p =
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Figure 1: Histograms of the estimated VaR and its coverage on the simulation of
GARCH(1,1). The red lines on the left figures are the true VaRp/σT+1, and those on
the right are the intended risk probability p.

{X1, . . . , XT} from a GARCH(1,1) model,

{
Xt = σtzt,

σ2
t = ω + αz2t−1 + βσ2

t−1,

where the true parameters are ω = 0.001, α = 0.05, and β = 0.9, and zt follows inde-

pendent standard normal distribution. We first estimate (ω, α, β) by maximum likeli-

hood estimation (MLE) and fit innovations {ẑ1, . . . , ẑT} and volatility σ̂T+1. We then

estimate VaRp for p ∈ {0.05, 0.01} for the next observationXT+1 by V̂aRp = −σ̂T+1κp,

where κp is given by the empirical p-quantile of {ẑ1, . . . , ẑT}. Since zT ∼ N(0, 1), we

can calculate the exact risk probability conditional on the history, P (−XT+1 > V̂aRp |
FT ).

6 We repeat this exercise for S = 1,000 times with newly drawn observations

and compute the unconditional risk probability P (−XT+1 > V̂aRp).

Figure 1 presents the histograms of the estimated risk and the risk probability for

6Here, FT is the σ-field that contains all information up to time T , including the VaR estimate.
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VaR of coverage 95% (p = 0.05) and 99% (p = 0.01). Figure 1a shows the histogram

of V̂aRp for XT+1 normalized by the volatility σT+1. Since the variance of XT+1

differs in each iteration, this normalization makes the estimates comparable across

iterations. The red line indicates the true value of VaRp/σT+1.

Figure 1b is the histogram of the risk probability conditional on history. The red

line indicates the intended risk probability p, and the blue dotted line is the average

of the conditional risk probability over iterations, estimating the actual unconditional

risk probability. We may interpret 0.0539 as meaning that if we maintain the capital

reserve of V̂aRp, the risk event takes place about 5.32% of the time, more often than

the intended 5%. This frequency is subject to the “sampling error” of the simulation,

so we conduct a t-test. By design, each draw of the conditional risk probability is

independent and identically distributed. We can then easily test the hypothesis that

the true unconditional risk probability equals the intended level,

H0 : P (−XT+1 > V̂aRp) = p.

The p-value is 9.04 × 10−11 as given in the caption of Figure 1b, indicating that the

unconditional risk probability exceeds the intended level with statistical significance.

Note that the distortion rate is substantially worse for p = 0.01. In Figure 1d,

the risk event occurs 1.39% of the time as opposed to the intended 1% (which is also

statistically significant), so the rate of distortion is (0.0139 − 0.01)/0.01 ≈ 38.8%.

This much larger than the 6.4% for p = 0.05. This is especially problematic when we

want to minimize the probability of a catastrophic event such as financial crisis.7

In Appendix A, we use parametric and semiparametric estimators of VaR and

find that better estimation of VaR does not necessarily lead to less distortion of risk

probability and that distortion can take place even when the estimator overestimates

VaR on average.8

7For regulatory capital calculations within the Basel framework, 99.9% coverage (p = 0.001) is
typically used for VaR.

8Tsafack and Cataldo (2021) also reported that even an unbiased estimator of VaR is likely to
produce systematic overviolation (coverage distortion).
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3 Main Results

This section presents the main results of the paper. Section 3.1 defines the class

of risk measures we consider. Section 3.2 provides a method to control the true

risk probability and formally proves the guarantee. Section 3.3 gives a practical

recommendation of the tuning parameters (q, r).

3.1 Definition

The risk measures to which our method applies are the ones that come with probabil-

ity guarantees. We start with reformulating VaR and then generalize it. Let (Ω,F , P )

be the probability space we consider.

The key feature of VaR is that it provides a guarantee on the probability of a risk

event, {−X > C}. Recall that VaRp is formally defined as the smallest value of C

such that

P (−X > C) ≤ p.

Equivalently, it can be cast as the smallest value of C such that

sup
E∈F

{
P (E)

the maximum prob-
ability of an event

: inf
ω∈E

−X(ω)− C > 0

in which the smallest
loss exceeds C

}
≤ p

is at
most p

.

The variables in this definition are visualized in Figure 2a. The middle component,

inf
ω∈E

−X(ω)− C,

is the key riskiness metric embedded in VaR. In other words, VaR defines the risk of

an event E to be such that, even the best-case loss in that event is greater than the

capital reserve C. Holding the capital worth C, therefore, corresponds to keeping the

maximum probability of such an event at or below p.

Other risk measures can be obtained by replacing this riskiness component. Acerbi

et al. (2001) defined the ES of coverage 1− p as

ESp(X) :=
1

p

∫ p

0

Q(α)dα,
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(b) ES regards the risk of event E as the
expected value exceeding reserve C.

Figure 2: Illustration of the definitions of VaR and ES as tail risk measures.

where Q is the quantile function of X. This can be cast as the smallest value of C

such that

sup
E∈F

{
P (E)

the maximum prob-
ability of an event

: E[−X | E]− C > 0

in which the expected
loss exceeds C

}
≤ p

is at
most p

,

as illustrated in Figure 2b. Thus, ES defines the riskiness of X by E[−X | E] − C

when the event E takes place and the capital reserve is C.9

Let ϱ(X,C | E) be an arbitrary metric of riskiness of asset value X under event

E that is nonincreasing in reserve C. The tail risk measure is formally defined as

follows.

Definition (tail risk measure). The tail risk measure of coverage 1−p is the infimum

of C such that

sup
E∈F

{
P (E) : ϱ(X,C | E) > 0

}
≤ p.

If there is no event E that attains ϱ(X,C | E) > 0 for a fixed C, we may understand

the supremum in that case to be 0.

Intuitively, the tail risk measure controls the probability of the undesirable event

ϱ > 0. The supremum over F represents a search for the maximum probability that

it can happen. The value C is the “capital reserve” with which we can avoid the risk

event with probability at least 1 − p. This is a direct control of the risk probability

compared to ones relying on the Markov bound (Roy, 1952; Goovaerts et al., 2003).

The choice of ϱ defines a risk measure. It is straightforward to extend it to various

9If we adopt E[−X | X ∈ X(E)] − C, we obtain what is called the tail conditional expectation
by Acerbi (2002). Here, X(E) is the set of values that X may take under the event E.
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tail risks. For example, the “two-sided” expected shortfall may be obtained via

ϱ(X,C | E) = E[|X| | E]− C,

which is useful when we want to use a common risk measure for longing and shorting

the asset, as in shorting the straddle option strategy. Or, the downside tail conditional

variance can be obtained by

ϱ(X,C | E) = E[(min{X − E[X], 0})2 | E]− C,

which is essentially what was discussed in Valdez (2005). We may also obtain the

“utility-based” shortfall risk,

ϱ(X,C | E) = E[ℓ(−X − C) | E],

for a nondecreasing loss function ℓ : R → R. This allows one to, e.g., incorporate loss
aversion into the risk measure.

Our definition shares a similar spirit with the tail risk measure analyzed by Liu

and Wang (2021), although there are some notable differences. For p ∈ (0, 1), they

defined a (1 − p)-tail risk measure ρ(X) to be one that depends only on the tail

distribution of X, that is, ρ(X) = ρ(Y ) if X and Y have a common quantile function

on the interval (0, p]. Our definition, on the other hand, regards any event as a risk

event so long as ϱ > 0, resulting in the supremum over the entire set of events F .

For VaR and ES, the “maximizing events” turn out to be identical to the tail events

considered in Liu and Wang (2021), while we leave other possibilities such as for the

two-sided expected shortfall defined above. Allowing the risk event to be arbitrary

may be convenient when we consider risks of multiple assets since the “tail events”

of different assets may occur in different situations.

Having said that, for the purpose of this paper, there is nothing that prohibits

us from maximizing over a subset of F .10 If we take the supremum over {{X <

c} : c ∈ R}, for example, our definition looks much more in line with that of Liu

and Wang (2021). However, even with this modification, the two definitions do not

perfectly coincide. A key property that characterizes ours is that the risk measure

is monotonic in p. Let cp be the tail risk measure of coverage 1 − p. Then, we have

10Theorem 2 below continues to hold if we replace F with an arbitrary subset of it.
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cq ≥ cp for q < p by construction.

Lemma 1 (Monotonicity in p). The tail risk measure cp is nonincreasing in p.

Proof. For q < p, we have

sup
E∈F

{
P (E) : ϱ(X, cq | E) > 0

}
≤ q < p.

Since cp is the infimum that bounds the LHS by p, we must have cq ≥ cp. ■

This monotonicity is essential in our framework since it ensures that cq serves as

a “more conservative” alternative to cp. Meanwhile, some examples discussed in Liu

and Wang (2021) such as the tail standard deviation are not necessarily monotonic

in p.11

A risk measure is often discussed in connection with the dual theory of choice

(Yaari, 1987) or the Choquet expected utility theory (Bassett et al., 2004). There,

various risk measures are expressed as a weighted integral of the quantile function Q

of X, i.e.,

ρ(X) =

∫ 1

0

−Q(u)dg(u)

for nondecreasing g such that g(0) = 0 and g(1) = 1. For example, the VaR of

coverage 1 − p emerges with g(u) = 1{u ≥ p}, and the ES of coverage 1 − p with

g(u) = 0 ∨ u
p
∧ 1. This type of risk measure is generally known as the distortion risk

measure. If g is concave, it is called the spectral risk measure (Acerbi, 2002, Definition

3.1) and is known to be coherent (Balbás et al., 2009, p. 390). Bassett et al. (2004)

associated concavity of g with pessimism and convexity of g with optimism. If g ≡ 1

on the interval [p, 1], it can be viewed that the distorted probability focuses exclusively

on the tail event (0, p].

To bring the distortion risk measure into our framework, we distinguish the part

that extracts the tail event and the part that represents the risk preference. Let

g : [0, 1] → [0, 1] be a nondecreasing function with g(0) = 0 and g(1) = 1, and let

Eg[X | E] be the distorted conditional expectation such that

Eg[X | E] =

∫ 1

0

QX|E(u)dg(u),

11Note that unlike the “downside tail conditional variance” defined above, the tail standard de-
viation considered in Liu and Wang (2021) involves centering at the tail conditional expectation,
which shatters monotonicity.
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where QX|E is the quantile function of X conditional on event E. With this, we can

define the distorted tail risk measure via

ϱ(X,C | E) = Eg[−X | E]− C.

Finally, we note that there are well-known risk measures that are not tail risk

measures. A simple example is variance, which concerns the entire distribution of

X. For the same reason, the expectile (Newey and Powell, 1987) and entropic VaR

(Ahmadi-Javid, 2012) fail to be tail risk measures. Both of them are closely related to

VaR and ES and are defined for each risk level p ∈ (0, 1). However, their definitions

involve the entire distribution of X at every value of p, so they do not concern a

particular tail event. For expectiles, p does not even represent probability.

3.2 Tail Risk Estimates with Guarantees

This section provides a method to control the actual risk probability with an observ-

able risk estimate. The essential assumption is that a (one-sided) confidence interval

for the tail risk measure cq is available, that is, we have access to an observable

quantity c̃q,r that satisfies

P (cq > c̃q,r) ≤ r

for an arbitrary confidence level 1− r.

To lay out how the Bonferroni bound can be generalized to arbitrary tail risk

measures, let us illustrate it for the case of ES. Note that the risk probability of ES

can be written as

sup
E∈F

P (E, E[−X | E] > ESp).

Since “E[−X | E] > ESp” is a nonrandom statement given E, the probability is either

P (E) when it holds or 0 otherwise. If we substitute the confidence interval into the

ES, we can apply the Bonferroni bound as

P (E, E[−X | E] > ẼSq,r) ≤ P (E, E[−X | E] > ESq) + P (E, ESq > ẼSq,r),

since violation of both inequalities on the right implies violation of the one on the
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left. By taking the supremum of both sides with respect to E, we find

sup
E∈F

P (E, E[−X | E] > ẼSq,r) ≤ sup
E∈F

[
P (E, E[−X | E] > ESq) + P (E, ESq > ẼSq,r)

]

≤ sup
E∈F

P (E, E[−X | E] > ESq) + P (ESq > ẼSq,r)

≤ q + r.

Thus, the risk probability including the sampling error of ẼSq,r is bounded by q + r.

The general statement is as follows.

Theorem 2 (Tail risk control with estimation error). Let cq be the tail risk measure

of coverage 1− q, and c̃q,r the (1−r)-confidence bound of cq, that is, P (cq > c̃q,r) ≤ r.

Then, for p = q + r, we have

sup
E∈F

P
(
E, ϱ(X, c̃q,r | E) > 0

)
≤ p.

Proof. Fix an event E ∈ F . By the Bonferroni inequality, we have

P
(
E, ϱ(X, c̃q,r | E) > 0

)
≤ P

(
E, ϱ(X, cq | E) > 0

)
+ P (E, cq > c̃q,r).

Taking the supremum of both sides with respect to E, we find

sup
E∈F

P
(
E, ϱ(X, c̃q,r | E) > 0

)
≤ sup

E∈F

{
P
(
E, ϱ(X, cq | E) > 0

)
+ P (E, cq > c̃q,r)

}

≤ sup
E∈F

{
P (E) : ϱ(X, cq | E) > 0

}
+ P (cq > c̃q,r)

≤ q + r = p.

This completes the proof. ■

Note that Theorem 2 does not make use of asymptotic arguments. Therefore, it is

valid in finite samples as long as the confidence interval is. It is however the case that

many existing inference methods are justified as asymptotic approximations. In that

case, the risk statement given in Theorem 2 should also be understood in asymptotic

terms.

While the theorem is valid for an arbitrary choice of (q, r), we cannot “hunt” for

the smallest c̃q,r after observing the data. This changes the distribution of c̃q,r for
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randomness introduced by the hunting, and the probability bound will no longer be

valid. Such is an example of data dredging. In the next section, we discuss a practical

choice of (q, r) that does not depend on the data.

The theorem assumes a one-sided confidence interval, but we note that the upper

bound of any two-sided confidence interval is by construction a valid one-sided confi-

dence interval at the same confidence level, although it will be more conservative than

necessary. Also, our results require only a confidence interval but not an estimator,

so the inference methods that do not require an estimator can also be used.

When the risk measure is subadditive, it is straightforward to tweak Theorem 2

for the sum of assets X + Y . Subadditivity has gained its popularity as one of the

desiderata of risk measures (Artzner et al., 1999; Acerbi, 2002; Dowd and Blake,

2006). It is well known that ES is subadditive (McNeil et al., 2005, Proposition 6.9;

Embrechts and Wang, 2015), while VaR is subadditive under additional assumptions

(Gourieroux et al., 2000, Section 2.4; Ibragimov, 2005, p. 25; McNeil et al., 2005,

Theorem 6.8; Garcia et al., 2007, Proposition 3.1). If a tail risk measure is subadditive,

it means that for the smallest values cp,X , cp,Y , and cp,X+Y such that

sup
E∈F

{
P (E) : ϱ(X, cp,X | E) > 0

}
≤ p,

sup
E∈F

{
P (E) : ϱ(Y, cp,Y | E) > 0

}
≤ p,

sup
E∈F

{
P (E) : ϱ(X + Y, cp,X+Y | E) > 0

}
≤ p,

we have cp,X+Y ≤ cp,X + cp,Y . Since ϱ is nonincreasing in C, we also have

sup
E∈F

{
P (E) : ϱ(X + Y, cp,X + cp,Y | E) > 0

}
≤ p.

Therefore, if a joint confidence set for (cp,X , cp,Y ) is available, we may use the (1− r)-

confidence bound for cp,X+cp,Y as the capital reserve for X+Y . If we only have access

to the marginal confidence bounds for cp,X and cp,Y , as is the case in Section 4, we

may use the sum of (1−r/2)-confidence bounds for cp,X and cp,Y as the capital reserve

for X + Y . This is another application of the Bonferroni bound. Finally, we note

that when there is enough computational resource, we can avoid overconservatism

introduced by the use of subadditivity and Bonferroni bound altogether by directly

estimating cp,X+Y and using its (1− r)-confidence bound.
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Finally, we note that estimation and inference for risk measures are a widely stud-

ied area, ranging from parametric to nonparametric methods. Embrechts et al. (1997)

and Bali and Theodossiou (2008) considered estimation and inference of VaR and ES

based on extreme value theory.12 Chen and Tang (2005) and Scaillet (2004) discussed

nonparametric estimation and inference of VaR and ES. Linton and Xiao (2013) and

Hill (2015) considered nonparametric estimation and inference of ES when X may not

have a variance. Belomestny and Krätschmer (2012) established asymptotic normal-

ity of plug-in estimators of law-invariant coherent risk measures. Gao and Song (2008)

derived asymptotic distribution of VaR and ES estimators in the GARCH model es-

timated by the filtered historical simulation method. There is also large literature on

estimation and inference of VaR and ES conditional on covariates (Chernozhukov and

Umantsev, 2001; Cai and Wang, 2008; Kato, 2012; Chernozhukov and Fernández-Val,

2011; Chun et al., 2012; Chernozhukov et al., 2017; Martins-Filho et al., 2018; Candila

et al., 2023) as well as regression-based nested simulation methods to estimate risk

measures in response to risk factors (Broadie et al., 2011, 2015).

3.3 Practical Choice of r

As the sample size increases, estimation of the risk measure is expected to be more

precise. This provokes a thought that we can spend less allowance on r and let q be

closer to p. In this section, we discuss the choice of r as a function of the sample size T ,

assuming that the confidence interval is constructed with a (sub)polynomially-tailed

distribution.

Suppose, first, that ĉq is a normally-distributed unbiased estimator with known

variance σ2
q , that is, √

T (ĉq − cq) ∼ N(0, σ2
q ).

The one-sided (1− r)-confidence bound for cq is then given by

ĉq +
σq√
T
κr,

where κr is the (1− r)th quantile of the standard normal distribution. This suggests

that the confidence bound shrinks at rate 1/
√
T for fixed r and blows up as r → 0

for fixed T . In reasonable situations, we can expect that σq is continuous at q = p,

12See also Nolde and Zhou (2021) for a concise review.
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so it is enough to consider a shrinking sequence r → 0 such that κr/
√
T goes to zero.

Let ϕ and Φ be the pdf and cdf of a standard normal distribution. Then, κr can

be expressed as

κr = Φ−1(1− r).

We know, by the property of the Mills ratio, that for x ≥ 1/
√
2π, we have

1− Φ(x) = Φ(−x) <
1

x
ϕ(x) ≤ e−x2/2.

Therefore, for 0 < r ≤ e−1/4π, we have

κr = Φ−1(1− r) = −Φ−1(r) <
√

−2 log r.

Thus, we can let r → 0 at the speed at which κr/
√
T <

√−2 log r/
√
T → 0, i.e.,

r ≫ e−T/2. Therefore, r can indeed go very fast to zero; e.g., any rational function in

T converges slower than e−T/2. For the sample sizes of order hundreds to thousands,

r = 1/T would be a good choice.

In other cases, the confidence interval may arise from a distribution that is more

heavy-tailed than the normal distribution, such as the t-distribution. Suppose that

κr is bounded by a polynomial function,

κr ≲ r−
1
ν ,

for some ν > 0 when r is close to zero. This is the case when, e.g., κr is the quantile

of a t-distribution with ν degrees of freedom. Then, we need that r−1/ν/
√
T go to

zero, i.e., r ≫ T−ν/2. In other words, if ν > 2 (which corresponds to having a finite

variance), the choice r = 1/T is justified.

We summarize that our recommended choice is r = T−1 for applications where the

estimator is root-n consistent and the asymptotic distribution has a finite variance.

This covers most estimators referenced at the end of Section 3.2. One exception is

Linton and Xiao (2013), who considered estimation of ES when the underlying time

series has an infinite variance. They observed that the convergence rate is strictly

slower than
√
T and the limiting distribution is a stable law. In that case, we will need

to find our own choice of r by going through similar considerations. Or, we may use

the trimming method proposed by Hill (2015) to bring it back to an asymptotically
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normal setup.

Practicality of the above argument may be diminished when the standard error is

expected to be relatively large. Another possible method is sample-splitting.

1. Split the sample into two subsamples T1 = {1, . . . , τ} and T2 = {τ + 1, . . . , T}.

2. Estimate c̃q,r as a function of (q, r) using T1.

3. Pick (q∗, r∗) that minimizes c̃q,r.

4. Estimate c̃q∗,r∗ using T2.

The subsample T1 may be replaced with simulation draws if we have a reasonable

base model. Various simulation methods are developed in the literature (Glasserman

et al., 2000; Jin et al., 2003; Lesnevski et al., 2007; Hong and Liu, 2009; Fuh et al.,

2011; Jiang and Kou, 2021).

4 Empirical Application to VaR and ES

In this section, we apply our method to real data drawing on an investment problem.

The purpose is to demonstrate that our proposed quantity is practically not too large

compared to a naive estimator, despite relying on a Bonferroni bound.

Consider the problem of controlling VaR and ES of a portfolio with three assets:

the stock of the Bank of America Corp. (BAC), the stock of Morgan Stanley (MS),

and the index fund for the Dow Jones Industrial Average (DJI). The choice of assets

is due to the ease of access to the data, but it can be any assets, e.g., on a bank’s

balance sheet. We use the daily adjusted close values from February 23, 1993 to

December 31, 2017. The price data are retrieved from Yahoo! Finance. Figure 3

shows the adjusted close values of these assets.

Denoting by Yt the daily close value, the daily return is calculated as Xt = (Yt −
Yt−1)/Yt−1. Figure 4 shows the daily returns of the three assets. The daily portfolio

return is given by

X = w1XBAC + w2XMS + w3XDJI,

where XTIC is the daily return of the stock of ticker symbol TIC, and (w1, w2, w3) are

the weights. Our goal is to estimate VaR and ES of coverage 1 − p of the return X

of the entire portfolio without losing probability guarantees.
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Figure 3: Daily adjusted close values of BAC, MS, and DJI from Feb. 23, 1993 to
Dec. 31, 2017. BAC and MS are on the left y-axis and DJI on the right.
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Figure 4: Daily returns of BAC, MS, and DJI from Feb. 23, 1993 to Dec. 31, 2017.
We see stochastic trends in their volatility.

We model each daily return as a GARCH(1,1) process,

{
Xt = µ+ σtzt,

σ2
t = ω + αz2t−1 + βσ2

t−1,

where {zt} are i.i.d. random variables and ω, α, β ≥ 0 are GARCH parameters.13 We

use Gao and Song (2008) to estimate VaR and ES for individual assets.

Let r = 1/T and q = p− 3r. The reason why q is more conservative than p− r is

as discussed at the end of Section 3.2. The asymptotic distribution given in Gao and

Song (2008, Theorems 3.2 and 3.3) is of the marginal distribution of each estimator.

To ignore the correlation of risk estimates, we need to allot r = 1/T to the confidence

bound of each asset separately. If there are many assets, this would lead to a very

conservative bound. An alternative is to use bootstrap methods such as Beutner et al.

(2024) and estimate the joint distribution of risk measures across assets.

13Xt is stationarity if α+ β < 1 and i.i.d. if α = β = 0.
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(a) Estimated VaR for (p, q, r) =
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(b) Estimated ES for (p, q, r) =
(5%, 3.98%, 0.34%). Uses the short data.
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(c) Estimated VaR for (p, q, r) =
(5%, 4.95%, 0.016%). Uses the long data.
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Figure 5: Estimated VaR and ES of daily returns for (p, q, r) = (0.05, p− 3/T, 1/T ).
The top figures use the data from Nov. 1, 2016 to Dec. 31, 2017 (T = 293), and the
bottom from Feb. 23, 1993 to Dec. 31, 2017 (T = 6,260).

Our estimation procedure goes as follows.

1. Estimate the GARCH parameters (µ, ω, α, β) by quasi-MLE assuming normality

of zt, and fit σ̂T+1 and {ẑ1, . . . , ẑt−1}.

2. Let κq be the empirical q-quantile of ẑt and compute the q-trimmed average of

ẑt by ηq =
∑T

t=1 ẑt1{ẑt < κq}/
∑T

t=1 1{ẑt < κq}.

3. Obtain the point estimates of VaRq and ESq by V̂aRq = σ̂T+1κq and ÊSq =

σ̂T+1ηq.

4. Estimate Var(V̂aRq) and Var(ÊSq) using analytical formulae provided in Gao

and Song (2008, Theorems 3.2 and 3.3).

19



5. Construct the one-sided (1− r)-confidence bounds ṼaRq,r and ẼSq,r, which are

our proposed risk estimates.

Figure 5 shows the estimates of VaR and ES, which are also summarized in Ta-

ble 1. Figures 5a and 5b use the data from November 1, 2016 to December 31, 2017,

consisting of T = 293 daily returns; Figures 5c and 5d from February 23, 1993 to

December 31, 2017, totaling T = 6,260 observations. The top three bars in Figure 5a

show the “naive” estimates of VaR of coverage 1− p, which have no guarantee on the

actual risk probability as discussed in Section 2. The next three bars are the interim

estimates of VaR of coverage 1− q. The last three bars are the upper bounds of the

one-sided (1 − r)-confidence intervals of VaRq; they satisfy the risk guarantee that

the probability of the next loss going above is less than p.

The numbers in parentheses in Table 1 are the multipliers relative to the “naive”

estimates; in columns (1–3) they are ratios relative to column (1), and in columns

(4–6) ratios relative to column (4); for example, in column (3), ṼaRq,r/V̂aRp, and in

column (6), ẼSq,r/ÊSp. The VaR has overall low multipliers, meaning that estimation

error can be addressed without being too conservative. The ES has bigger multipliers,

but the magnitudes are still comparable to the multipliers needed for model risk.14

Whenever we can construct a confidence interval, we advocate the use of our method

since the multipliers heavily depend on the sample size. When statistical inference is

not available, using a fixed multiplier of 2 may be practically reasonable to address

estimation error of VaR and ES.15

With the above results, we may control the risk of the entire portfolio. Assuming

that VaR is subadditive (Gourieroux et al., 2000, Section 2.4; Ibragimov, 2005, p. 25;

McNeil et al., 2005, Theorem 6.8; Garcia et al., 2007, Proposition 3.1), we can bound

the VaR of the entire portfolio of coverage 1− p by

w12.05% + w22.01% + w30.65%,

where (2.05%, 2.01%, 0.65%) are the ṼaRq,r from Figure 5a and (w1, w2, w3) are weights

of the portfolio on BAC, MS, and DJI. Note that even without the assumption of

subadditivity, we can directly compute the bound by applying the same exercise to

14The recommended multiplier for model risk is 3 for VaR (Stahl, 1997) and 1.5 for ES (Leippold
and Vanini, 2002).

15Note that our estimates used a conservative choice of q = p − 3r to get away with correlation
estimation, which may be unnecessary in some applications.
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Table 1: Estimates of 95% VaR and ES in the percentage units. The numbers in
parentheses are the multipliers relative to V̂aRp and ÊSp.

(1) (2) (3) (4) (5) (6)

V̂aRp [%] V̂aRq [%] ṼaRq,r [%] ÊSp [%] ÊSq [%] ẼSq,r [%]

Nov. 1, 2016 to Dec. 31, 2017 (T = 293)

BAC 1.649 1.762 2.047 2.772 3.046 4.612
(1.000) (1.069) (1.241) (1.000) (1.099) (1.664)

MS 1.369 1.466 2.009 2.584 2.806 4.054
(1.000) (1.071) (1.468) (1.000) (1.086) (1.569)

DJI 0.494 0.520 0.646 0.842 0.917 1.322
(1.000) (1.052) (1.308) (1.000) (1.089) (1.570)

Feb. 24, 1993 to Dec. 31, 2017 (T = 6,260)

BAC 1.800 1.801 1.927 2.596 2.604 2.917
(1.000) (1.001) (1.071) (1.000) (1.003) (1.124)

MS 1.612 1.616 1.848 2.255 2.261 2.634
(1.000) (1.002) (1.146) (1.000) (1.003) (1.168)

DJI 0.792 0.796 0.886 1.134 1.137 1.291
(1.000) (1.004) (1.119) (1.000) (1.003) (1.138)

the transformed historical data {w1XBAC+w2XMS+w3XDJI}. The advantage of this
is that it will not be conservative. If we use subadditivity, it eliminates the need to

re-estimate the risk as we consider other weights, but at the expense of being more

conservative than necessary.

Since ES is subadditive by construction, we can bound the ES of our portfolio of

coverage 95% by

w14.61% + w24.05% + w31.32%,

where the numbers come from the ẼSq,r in Figure 5b.

We may also allow for short positions (negative weights). Observe that the risk

associated with shorting Xt is equal to the risk of longing −Xt. Then, we can apply

the same method with the risk estimates on the other tail.

5 Conclusion

Many risk measures are motivated by a certain guarantee on the probability of a ruin.

Estimation error involved in risk assessment is one of many factors that impair the
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intended risk guarantee (Section 2). We addressed this issue and proposed a method

to recover the intended risk probability guarantee with an observable risk estimate,

namely the confidence interval of the risk measure.

We characterized the class of risk measures to which our method can be applied,

and named them the tail risk measure (Section 3.1). We showed that the class con-

tains VaR and ES, and discussed that it can be extended to various other tail risks

(Section 3.2). Our method of risk control is based on the Bonferroni inequality and

hence is robust against arbitrary correlation between the risk variable X and the risk

estimate. We also provided a recommendation of the tuning parameters (q, r) so that

our risk estimate is consistent (Section 3.3).

In the empirical application, we applied our method to the VaR and ES estimation

for an arbitrary portfolio of three assets (Section 4). We found in our setup that

our proposed risk estimates on VaR are generally larger than the naive estimates

by 10–50%, and those on ES by 20–70%. These are modest inflation compared to

the multipliers for model risk. This demonstrated that our method produces risk

estimates that are practically not too conservative.

Appendices

A Failure to Control Tail Risk with Other Estima-

tors

In Section 2, we showed that the estimation error of a nonparametric estimator of

VaR distorts the risk probability. To see how sensitive this is to the choice of the

estimator, we examine canonical parametric and semiparametric estimators of VaR.

The setup is the same as before, but now the κp in V̂aRp = −σ̂T+1κp is given by

one of the following estimators.

1. Parametric. The p-quantile of a standard normal distribution.

2. Semiparametric. Weissman’s (1978) estimator of the p-quantile of {ẑ1, . . . , ẑT},

κp = ẑ(k) −
(
ẑ(k) −

1

k

k∑

i=1

ẑ(i)

)
log

(
k

pT

)
for k = 10.
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The results are summarized in Figure 6. Being correctly specified, the parametric

estimator achieves the smallest mean squared error (MSE). For p = 0.05, the MSE

of the parametric estimator is 0.0207, while those of the semi- and nonparametric

estimators are 0.0355 and 0.0339 (as given in the captions of Figures 6a, 6e, and 1a).

Thus, in the context of this simulation, the parametric estimator is the “best” among

the three. However, this relationship does not carry over to the risk probability.

The distortion of the risk probability is 5.32% − 5.00% = 0.32% for the parametric

estimator, which is worse than 0.15% of the semiparametric estimator. In other words,

higher precision of VaR estimation should not be taken as evidence of less distortion

of the risk probability.

Also, it is interesting to note that while the semiparametric estimator overesti-

mates the true VaR for p = 0.05 on average (that is, the blue dotted line is above

the red line in Figure 6e), the risk probability is still above the intended level (that

is, the blue dotted line is above the red line in Figure 6f).

As was for the nonparametric estimator, the observation that the distortion rates

are worse for p = 0.01 than for p = 0.05 carries over to the parametric and semipara-

metric estimators.

References

Acerbi, C. (2002): “Spectral Measures of Risk: A Coherent Representation of Sub-

jective Risk Aversion,” Journal of Banking and Finance, 26, 1505–1518.

Acerbi, C., C. Nordio, and C. Sirtori (2001): “Expected Shortfall as a Tool

for Financial Risk Management,” ArXiv:cond-mat/0102304.

Adrian, T. and M. K. Brunnermeier (2016): “CoVaR,” American Economic

Review, 106, 1705–1741.

Ahmadi-Javid, A. (2012): “Entropic Value-at-Risk: A New Coherent Risk Mea-

sure,” Journal of Optimization Theory and Applications, 155, 1105–1123.

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999): “Coherent

Measures of Risk,” Mathematical Finance, 9, 203–228.

23



1 2 3
0

50

100

150

200

1.64

V̂aRp/σT+1

F
re
q
u
en
cy

Avg = 1.631

(a) Parametric estimator of VaR for p =
0.05. The MSE is 0.0207.

0 0.1
0

50

100

150

200

0.05

P (−XT+1 > V̂aRp | FT )

F
re
q
u
en
cy

Avg = 0.0532

(b) Coverage of estimator in (a). The p-
value for H0 : Avg = 0.05 is 9.04× 10−11.

1 2 3
0

50

100

150

200

2.33

V̂aRp/σT+1

F
re
q
u
en
cy

Avg = 2.307

(c) Parametric estimator of VaR for p =
0.01. The MSE is 0.0414.

0 0.05 0.1
0

50

100

150

200

0.01

P (−XT+1 > V̂aRp | FT )
F
re
q
u
en
cy

Avg = 0.0119

(d) Coverage of estimator in (c). The p-
value for H0 : Avg = 0.01 is 5.02× 10−19.

1 2 3
0

50

100

150

200

1.64

V̂aRp/σT+1

F
re
q
u
en
cy

Avg = 1.645

(e) Semiparametric estimator of VaR for p =
0.05. The MSE is 0.0355.

0 0.1
0

50

100

150

200

0.05

P (−XT+1 > V̂aRp | FT )

F
re
q
u
en
cy

Avg = 0.0515

(f) Coverage of estimator in (e). The p-value
for H0 : Avg = 0.05 is 0.017.

1 2 3
0

50

100

150

200

2.33

V̂aRp/σT+1

F
re
q
u
en
cy

Avg = 2.229

(g) Semiparametric estimator of VaR for
p = 0.01. The MSE is 0.0749.

0 0.05 0.1
0

50

100

150

200

0.01

P (−XT+1 > V̂aRp | FT )

F
re
q
u
en
cy

Avg = 0.0153

(h) Coverage of estimator in (g). The p-
value for H0 : Avg = 0.01 is 4.15× 10−57.

Figure 6: The same as Figure 1 but for parametric and semiparametric estimators.

24



Aussenegg, W. and T. Miazhynskaia (2006): “Uncertainty in Value-at-Risk

Estimates under Parametric and Non-parametric Modeling,” Financial Markets

and Portfolio Management, 20, 243–264.

Balbás, A., J. Garrido, and S. Mayoral (2009): “Properties of Distortion

Risk Measures,” Methodology and Computing in Applied Probability, 11, 385–399.

Bali, T. G. and P. Theodossiou (2008): “Risk Measurement Performance of

Alternative Distribution Functions,” Journal of Risk and Insurance, 75, 411–437.

Barone-Adesi, G. and K. Giannopoulos (2001): “Non-parametric VaR Tech-

niques. Myths and Realities,” Economic Notes, 30, 167–181.

Bassett, Gilbert W., J., R. Koenker, and G. Kordas (2004): “Pessimistic

Portfolio Allocation and Choquet Expected Utility,” Journal of Financial Econo-

metrics, 2, 477–492.
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