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Preface

This is a collection of lecture notes for the first-year graduate course in probability
and statistics for economics and business students. Major emphasis is put on asymp-
totic (large-sample) statistics. The intended reader is a user of statistics rather than
a developer, so proofs are kept minimal and more focus is placed on the interpretation
and connection of theory and applications.

Theorem clauses contain the main theoretical exposition of the course. Proposi-
tions are addenda that are outside the scope of the exams. Remarks contain miscel-
laneous notes—minor or too advanced—that may be disregarded without affecting
the main argument. Chapter appendices are also outside the scope of the exams.

There are some notational conventions we employ in the lecture notes. The in-
dicator function is denoted by 1{·}, for example, 1{x = 5} equals 1 if x = 5 and 0
otherwise. The maximum and minimum of two numbers are denoted with ∨ and ∧,
so a ∨ b := max{a, b} and a ∧ b := min{a, b}. The norm ∥ · ∥ denotes the Euclidean
norm. Unless otherwise specified, a vector is a column vector. The ordering of two
vectors is elementwise, i.e., x ≥ y means xi ≥ yi for every index i. Symmetric positive
semidefinite matrices are ordered by the Loewner ordering, that is, A ≥ B means that
A−B is positive semidefinite. The prime applied to a vector gives a transpose; to a
function gives a derivative. For example, for a matrix-valued function f : R → Rn×m,
f ′(t)′ denotes the transpose of the n×m matrix of derivatives f ′(t) = d

dt
f(t). Double

differentiation with respect to a vector argument is understood as a Hessian, i.e., for
a multivariate function f : Rn → R, f ′′(x) = d2

dxdx′f(x) is an n× n matrix of second-
order cross derivatives. When a function depends on two arguments θ and x, one of
them may be occasionally put as a subscript, e.g., ℓθ(x). The partial differentiation of
ℓ with respect to the subscript argument is denoted with a dot, i.e., ℓ̇θ(x) = ∂

∂θ
ℓθ(x)

and ℓ̈θ(x) = ∂2

∂θ∂θ′ ℓθ(x). The Kronecker product is denoted by ⊗, e.g.,

[
a11 a12
a21 a22

]
⊗
[
b11 b12
b21 b22

]
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 .

For a square matrix A, det(A) denotes the determinant of A and tr(A) the trace
of A. For a matrix A, vec(A) denotes the vectorization of A into a column vector,
e.g., vec( a b

c d ) = (a, c, b, d)′. For a symmetric matrix A, vech(A) denotes the half-
vectorization of its lower triangular part, e.g., vech( a b

b d ) = (a, b, d)′. The operator diag
vii
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converts vectors and square matrices into diagonal matrices, e.g., diag(a, b) = [ a
b ]

and diag( a b
c d ) = [ a

d ].
A limited number of applied papers are summarized and presented throughout the

notes to illustrate the concepts. Simplicity is prioritized over accuracy. For detailed
and precise description of what they do, I encourage the reader to dig into the original
papers.



CHAPTER 1

Introduction

Believe those who are seeking
the truth; doubt those who
find it; doubt everything, but
don’t doubt of yourself.

André Gide, translated by
justin o’brien, 1952

1.1. Why Statistics?

Why do we learn statistics? The simplest answer is because statistics is the basis
of inductive reasoning, and inductive reasoning is key to today’s social science.

Let us review the overarching structure of science. American philosopher Charles
Sanders Peirce classified reasoning into three categories: deduction, induction, and
abduction. Deduction is the process of extracting consequences that follow from
accepted premises. If A implies B and B implies C, then concluding that A implies C
is a deductive reasoning. Mathematics is an obvious example of the use of deduction.1
The merit of deductive reasoning is its rigor. Induction is the process of drawing
general conclusions from examples. With the observation that the sun has risen from
the east thus far, concluding that the sun will rise from the east tomorrow is an
inductive reasoning. An example in science is when a medical trial finds the efficacy
of a new drug. A benefit of inductive reasoning is that it allows us to be agnostic
on the rigorous chain of steps by which one thing leads to another. Abduction is the
process of forming explanatory hypotheses. If A implies B and B is observed, then
proposing A as a possible explanation for B is an abductive reasoning. A prominent
example is when a physicist comes up with a new theory of everything. Abductive
reasoning enables us to generate new insights and new perspectives.

One mode of reasoning does not stand alone. A theory abductively proposed in
physics must be followed by a load of experiments to verify its implications, whose
process is mostly inductive. A drug inductively discovered by a medical experiment
invites further research to find out why it is effective, which may be abductive.

Economics is no exception to utilizing various inferential arguments; there are
subfields of economics whose principal modes of inquiry vary across all three. A
prominent subfield of a deductive nature is microeconomic theory; that of abductive
is behavioral economics. However, being the science of as complex a matter as humans

1The method of mathematical induction is yet a form of deduction.

1
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Figure 1.1. Probability theory and statistics.

and their behaviors, a substantial portion of the economics discipline is dedicated to
the realm of applied research, whose principal mode of inquiry is induction. It is
no surprise that the major advantage of inductive reasoning as being independent of
the underlying mechanism plays a crucial role in the credibility of economic research.
Familiarizing yourself with the basic knowledge of statistics, therefore, is an integral
and imperative part of graduate education in economics and business.

1.2. What is Statistics?

The starting point of inductive reasoning is to collect data, and their observation
is often made in a probabilistic manner. Income may be determined by a number of
factors such as intelligence and social skills, which may seem random for the factors
unobservable to us; customer survey may only be feasible on a subset of customers
and the subset may be chosen randomly. In this sense, probability and statistics are
closely connected, even the flip sides of the same coin (Figure 1.1).

Probability theory concerns how random events take place, how data come about
from a more fundamental probabilistic structure. However, what we are interested in
is usually the fundamental structure and not the data themselves; as concerned as we
are about the underlying relationship of the wage and education, the specific wage and
education level of a specific individual are of no interest to economists. Statistics, in
that regard, aims to uncover the fundamental structure from the data. In this sense,
statistics can be considered an inverse operation of probability realization. In the
early days of statistics, the field was indeed called “inverse probability.”2

Questions that statistics can answer can be classified into three types.
1. Descriptive: What is the prevalence of the flu? What is the compliance rate

of transactions in a company? What errors do peer reviewers detect?
2. Predictive: What will the trajectory of a Hurricane be? What will be the

revenue of a company next quarter? Which movie will a customer like?
3. Causal: Does reducing the class size improve elementary school education?

Is there racial discrimination in the market for home loans? How much do
cigarette taxes reduce smoking?

2Statistics started with what is now known as Bayesian inference. So “inverse probability” is
considered a precursor to Bayesian statistics. Yet, the conceptualization of inverting the direction
of the arrow stands just as well for frequentist statistics.
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Contemporary academic research in economics and business is heavily geared to-
ward causal inference, while statistics in industry is equally focused on prediction.

1.3. Which Statistics?

Not only that there is uncertainty in the observation of data—which is formulated
as probability—there can just as well be uncertainty in the probabilistic structure
itself. For example, while the outcome of a coin toss is random, there is almost no
uncertainty that it follows a Bernoulli distribution. But when it comes to the firm
size of an American firm, what distribution it follows is very much disputable. If we
end up making a wrong assumption about the distribution, the statistical analysis
that follows might be inaccurate.

In light of this, it is important to distinguish the two types of statistics: finite-
sample statistics and asymptotic (large-sample) statistics. Finite-sample statistics
builds on a complete description of the probability structure, and the characteristics
of our statistical analyses can be driven precisely. In this sense, finite-sample statistics
is exact. It is useful when the statistician can decide on the entire randomness in
small experiments or when the sample size is small as in psychology. On the other
hand, asymptotic statistics uses an approximation to the probability distributions in
exchange for weaker assumptions. Such is possible when many distinct probability
structures give rise to a similar situation as the size of the data gets bigger. It is useful
for observational studies or large experiments in which a vast number of data points
are available but specific distributional assumptions are eschewed, as in economics
and business research.

This course puts more emphasis on asymptotic statistics as it is the widely ac-
cepted viewpoint of applied research in economics and business. Note, however, that
finite-sample statistics and asymptotic statistics are not mutually exclusive. When
one statistical method can be analyzed by either, the assumptions required by them
are often nested. In that case, statistical modeling can be made in two layers of
validity—when strong assumptions hold, we can draw exact conclusions in finite
samples, and if we only buy into weak assumptions, we can still draw approximate
conclusions whose precision depends on how large the dataset is.





CHAPTER 2

Probability Theory

But to us, probability is the
very guide of life.

Joseph Butler, quoted in
the analogy of religion,
introduction by henry g.

bohn, 1852

Among all kinds of random objects, real-valued random variables are the basics
of all and most important. In this chapter, we discuss some properties of real-valued
univariate and multivariate random variables.

2.1. Probability Distributions

2.1.1. Univariate distributions. The probability distribution of a one-dimen-
sional random variable is described by the cumulative distribution function.

Definition 2.1 (Cumulative distribution function). The cumulative distribution func-
tion (cdf) of a random variable X is a function FX : R → [0, 1] defined by

FX(x) := P (X ≤ x).

The cdf gives a complete characterization of any univariate random variable.

Theorem 2.1 ([CB02, Theorem 1.5.3]). A function F : R → [0, 1] is a cdf of some
random variable if and only if F is nondecreasing and right-continuous and satisfies
limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

The inverse of the cdf is called the quantile function. The quantile function is
defined on an open interval (0, 1) to avoid singularities at the end points. This gives a
percentile for any percentage normalized between 0 and 1. It is conventionally defined
as a left-continuous function, unlike the cdf (Figure 2.1).

Definition 2.2 (Quantile function). The quantile function of a random variable X
is the left-continuous generalized inverse QX : (0, 1) → R of FX ,

QX(u) := inf{x ∈ R : FX(x) ≥ u}.

Example 2.1 (Bernoulli). A random variable X is called Bernoulli if X = 1 with
some probability p and X = 0 with probability 1−p. We have FX(x) = (1−p)1{x ≥
0} + p1{x ≥ 1} and QX(u) = 1{u > 1 − p}. A coin toss is an example of a Bernoulli
random variable with p = 1/2.

5
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Figure 2.1. Probability distribution function and quantile function
of a random variable X that is neither continuous nor discrete.

Example 2.2 (Uniform). A random variableX is called uniform if FX(x) = 0∨x−a
b−a

∧1
for some a < b. We denote it by X ∼ U [a, b]. The quantile function of X is
QX(u) = u. A lottery is an example of a uniform random variable.

The cdf may not be the most convenient tool to work on a random variable with.
Alternatively, we can define a random variable by the derivative of a cdf. If such a
representation exists, we call the random variable absolutely continuous. In statistics,
however, absolutely continuous random variables are casually called continuous.

Definition 2.3 (Discrete and continuous random variables). The random variable
X is said to be discrete if FX is a step function. It is said to be continuous if FX

is continuous. It is said to be (absolutely) continuous if FX is absolutely continuous,
that is, there exists a function pX : R → R such that for every x ∈ R,

FX(x) =
∫ x

−∞
pX(t)dt.

In this case, pX is called the probability density function (pdf) of X.

Theorem 2.2 ([CB02, Theorem 1.6.5]). A function p : R → R is a pdf of some
random variable if and only if p ≥ 0 and

∫∞
−∞ p(t)dt = 1.

Example 2.3 (Normal). A random variable X is called normal if the pdf takes the
form pX(x) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
for some µ ∈ R and σ > 0. We denote it by X ∼

N(µ, σ2). The cdf and quantile function of X do not have closed-form expressions.
For example, the height of a randomly chosen person from a homogeneous population
can be very well approximated by a normal random variable.

Remark 2.1. It is possible to extend the notion of pdf to any random variable, abso-
lutely continuous or not, by the means of a Radon–Nikodym derivative (Section 2.A).
In fact, the “probability mass function (pmf)” that you may have learned in other
statistics courses is a “pdf” with respect to some non-Lebesgue measure.
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2.1.2. Multivariate distributions. When there is more than one random vari-
able, their relationship must be defined by the means of a joint distribution.

Definition 2.4 (Multivariate cdf and pdf). The joint cdf of k real-valued random
variables X1, . . . , Xk is FX1,...,Xk

(x1, . . . , xk) := P (X1 ≤ x1, . . . , Xk ≤ xk). The joint
pdf of X1, . . . , Xk, if exists, is a function pX1,...,Xk

: Rk → R such that

FX1,...,Xk
(x1, . . . , xk) =

∫ x1

−∞
· · ·

∫ xk

−∞
pX1,...,Xk

(s1, . . . , sk)dsk · · · ds1.

The univariate cdf FX and pdf pX are sometimes specifically called the marginal
cdf and marginal pdf if there is a need for distinction. By definition, we can calculate
the marginal cdf from the joint cdf, e.g., as

FX(x) = lim
y→∞

FX,Y (x, y).

If a joint pdf exists, then we can calculate the marginal cdf and pdf by

FX(x) =
∫ x

−∞

∫ ∞

−∞
pX,Y (s, t)dtds, pX(x) =

∫ ∞

−∞
pX,Y (x, t)dt.

The most important relationship between random variables is that there is no
relationship, which is called independence.

Definition 2.5 (Independence). The random variables X1, . . . , Xk are called inde-
pendent if their joint cdf is represented in the product form, FX1,...,Xk

(x1, . . . , xk) =
FX1(x1) · · ·FXk

(xk). If such decomposition exists, each function FXj
corresponds to

the marginal cdf of Xj. Denote by X1 ⊥ X2 if X1 and X2 are independent.

Exercise 2.1 (Pairwise independence). Let (X, Y, Z) be a triplet of binary random
variables that takes four values {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} with equal prob-
ability. Show that (X, Y ) are independent, (Y, Z) are independent, and (Z,X) are
independent, but (X, Y, Z) are not independent. It is said that (X, Y, Z) are pairwise
independent but not mutually (or jointly) independent.

If the joint cdf admits a joint pdf, then FX1,...,Xk
(x1, . . . , xk) = FX1(x1) · · ·FXk

(xk)
if and only if pX1,...,Xk

(x1, . . . , xk) = pX1(x1) · · · pXk
(xk).

We sometimes employ the vector notation. For example, if X = (X1, . . . , Xk)′ is
a k × 1 column vector of random variables, then FX(x) = P (X1 ≤ x1, . . . , Xk ≤ xk)
denotes the joint cdf, where x = (x1, . . . , xk)′ is also a k × 1 vector.

Remark 2.2. For a k-dimensional random vector X = (X1, . . . , Xk)′, the function
C(u1, . . . , uk) := FX(F−1

X1 (u1), . . . , F−1
Xk

(uk)) is called the copula and has some appli-
cation in finance.

2.2. Functions of Random Variables

Many statistical applications involve transformations of random variables.

Example 2.4 (Sealed-bid auction). Each bidder of an auction has an associated
value, monetary or utility, that she gains by winning the auction. The function
that maps the value to the bid is called the bidding strategy. From an economist’s



8 2. PROBABILITY THEORY

pY

pX

g

X
Y

Figure 2.2. The change of variables Y = g(X). The steeper g leads
to the greater pY ; the flatter g to the less pY .

perspective, the randomness of the bids comes from the randomness of the values, and
it is often of interest to figure out the distribution of the values from the distribution
of the bids, which, e.g., allows counterfactual analysis of alternative auction systems.
Example 2.5 (Option pricing). The payoff of a financial derivative is given as a
transformation of the payoff of the underlying asset. For example, the payoff of a
European call option of a stock with a strike price k is given by max{X−k, 0} where
X is the price of the underlying stock at the expiration date. To price the option,
the distribution of the payoff must be derived from the distribution of X.

For a k-dimensional random variable X and a suitably measurable function g :
Rk → Rm, Y := g(X) defines a new m-dimensional random variable. Its cdf is

FY (y) = P (g(X) ≤ y) = P (X ∈ g−1((−∞, y1] × · · · × (−∞, ym])).
If k = m = 1, g is increasing and differentiable at x, and FX is differentiable at x,
the pdf of Y at y = g(x) can be computed by the chain rule

pY (y) = dFY (y)
dy

= dFX(g−1(y))
dy

= pX(g−1(y)) 1
g′(g−1(y)) .

Figure 2.2 provides the intuition that the steeper the slope of g, the smaller the
transformed density. This can be extended to cases where k = m > 1 and g is
bijective but not necessarily increasing as

pY (y) = pX(g−1(y))
∣∣∣∣∣det

(
dg−1(y)
dy′

)∣∣∣∣∣.
Example 2.6 (Inverse transform sampling). Let U ∼ U [0, 1] and QX be a quantile
function. Then the cdf of X := QX(U) is given by FX = Q−1

X . This is one way
computers generate random variables from various distributions.
Exercise 2.2 (Probability integral transform). Let X be a continuous random vari-
able and FX its cdf. Show that U := FX(X) follows U [0, 1]. This is related to the
distribution of p-values (Exercise 5.4).
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Figure 2.3. Transformations of the normal distribution.

Example 2.7 (Linear transformation and normality). Let X = (X1, . . . , Xk)′ ∼
N(µ,Σ) be a multivariate normal vector. Then, any linear combination of X follows
a univariate normal distribution, that is, for every β ∈ Rk, X ′β follows N(µ′β, β′Σβ).
The converse is also true: if X ′β follows a univariate normal distribution for every
β ∈ Rk, then X follows a multivariate normal distribution. This property can in turn
be used to “extend” the notion of normal distribution to more complicated random
objects, such as Banach-valued normal distributions.

Exercise 2.3 (Convolution). Let[
X
Y

]
∼ N

([
µX

µY

]
,

[
σ2

X ρσXσY

ρσXσY σ2
Y

])
be a bivariate normal vector with −1 < ρ < 1. Derive the pdf of Z := X + Y . Hint:
Derive the joint pdf of [ X

Z ] =
[

X
X+Y

]
using the above formula and take the marginal

of Z.

Example 2.8 (Chi-square distribution). If X1, X2, . . . , Xk are independent standard
normal random variables, the distribution of Y = X2

1 + · · · +X2
k is known as the chi-

square distribution with k degrees of freedom and is denoted by χ2(k) (Figure 2.3a).
For two independent χ2 random variables Y1 and Y2 with degrees of freedom k1 and
k2, the distribution of the ratio Y1/k1

Y2/k2
is known as the F -distribution with k1 and k2

degrees of freedom.

Example 2.9 (Lognormal distribution). If X follows a normal distribution N(µ, σ2),
the distribution of exp(X) is known as the lognormal distribution and is written as
Lognormal(µ, σ2) (Figure 2.3b). The right tail of a lognormal distribution is known
to decay slower than an exponential function.

Independence is preserved under transformations.

Theorem 2.3 (Preservation of independence). If X and Y are independent, then for
every measurable function g, g(X) and Y are independent.
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Figure 2.4. Mean is where the scale of pdf balances; median is where
the probability is split in half; mode is where the pdf attains its maxi-
mum.

2.3. Expectation and Moments

When we face probabilistic situations, it is often helpful to look at some quantities
that summarize specific aspects of the randomness. For example, a marketer may
evaluate promotional offers by the expected revenue they bring, or an investor may
pick a portfolio based on the expected return and the risk of various stocks. Many of
these summary quantities are defined by the means of expectation.

Definition 2.6 (Expectation). For a random variable X in Rk and a suitably mea-
surable function g : Rk → Rℓ, the expectation of g(X) is given by

E[g(X)] :=
∫
Rk
g(x)dFX(x).

Theorem 2.4 (Law of the unconscious statistician). Let Y := g(X). Then E[Y ] =
E[g(X)].

The expectation of a random variable is a primary measure of its location. How-
ever, alternative location measures do exist and are sometimes more useful (Fig-
ure 2.4). For example, the median income is used to describe the income of an average
individual; a tail quantile is used to measure the risk of a portfolio (Value-at-Risk).

Definition 2.7 (Median and quantiles). The median Med(X) of a univariate random
variable X is QX(1/2). For α ∈ (0, 1), the αth quantile of X is QX(α).

Exercise 2.4. Show that E[X] =
∫ 1

0 QX(u)du.

Expectations of some powers of a random variable are called moments.

Definition 2.8 (Moments). For a positive integer r, the rth moment of a univariate
random variable X is defined by

E[Xr] :=
∫
R
xrdFX(x),

and the rth central moment of X is defined by E[(X − E[X])r]. For a real number r,
the rth absolute moment of X is defined by E[|X|r].
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Exercise 2.5. Prove that if E[|X|r] < ∞ for some r > 0, then E[|X|q] < ∞ for every
0 < q < r.

The second central moment of a random variable measures the dispersion and is
known as variance.

Definition 2.9 (Variance). The variance of a univariate random variable X is

Var(X) := E[(X − E[X])2] =
∫
R
(x− E[X])2dFX(x).

The standard deviation of X is
√

Var (X).

Example 2.10 (Tail probability). The standard deviation can be used to bound
the tail probability of a random variable. Let µ = E[X] and σ2 = Var(X). If
X is normally distributed, the three-sigma rule tells that P (|X − µ| ≥ σ) ≈ 32%,
P (|X−µ| ≥ 2σ) ≈ 5%, and P (|X−µ| ≥ 3σ) ≈ 0.3%. IfX is not normally distributed,
this relationship no longer holds. However, we can still (very loosely) bound the tail
probability by the variance through Chebyshev’s inequality, for c > 0,

P (|X − µ| ≥ cσ) ≤ E[(X − µ)2]
c2σ2 = 1

c2 .

Exercise 2.6. For each c ≥ 1, find a random variable X such that P (|X − µ| ≥
cσ) = 1/c2. This means that Chebyshev’s inequality cannot be improved without
additional assumptions on X.

Variance is by no means the only measure of dispersion. For example, the expected
absolute deviation from the mean, E[|X − E[X]|], also measures how widespread the
distribution of X is. So why is variance our favorite dispersion measure? Here are
some pros and cons.
Mean squared deviation (variance):

� Relates nicely to the mean (Theorem 2.5). This gives justification to the use
of a conditional mean as the best predictor (Section 7.1.2).

� Relates nicely to the dispersion of the sum of random variables. For example,
Var(∑n

i=1 Xi) = ∑n
i=1 Var(Xi) if X1, . . . , Xn are independent.

� Relates nicely to the central limit theorem (Theorem 3.5). An average in-
herits variance from each component, but not other dispersion measures.

� Relates nicely to the concept of covariance (Definition 2.10). This is sur-
prising given that covariance is a measure of comovement, which sounds
conceptually irrelevant to a measure of dispersion.

� Can exploit orthogonality. We can make use of the mathematical wisdom
such as the Pythagorean theorem and orthogonal projection.

� Compatible with a large body of statistics.
� Hard to interpret. If X is in the units of $, the variance is in the units of $2,

but what does that mean?
Mean absolute deviation (MAD):
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� Can exist even when variance does not. This gives a kind of robustness in
some applications.

� Relates nicely to the concept of the median (Theorem 2.6).
� Relates nicely to some financial concepts (straddle strategy, etc.).
� Compatible with a small body of statistics.

Overall, the variance wins and hence the primary dispersion measure in statistics.
A notable relationship of the mean and variance is the minimum-minimizer rela-

tionship given as follows.

Theorem 2.5 (Mean minimizes squared error). If E[X2] < ∞, then we have E[X] =
arg minb∈R E[(X − b)2] and Var(X) = minb∈R E[(X − b)2].

Proof. Write E[(X−b)2] = E[(X−E[X]+E[X]−b)2] = E[(X−E[X])2]+2E[(X−
E[X])(E[X] − b)] + E[(E[X] − b)2]. The first term is irrelevant to minimization. The
second term is zero. The third term is uniquely minimized at b = E[X]. ■

An analogous relationship holds between the median and the mean absolute de-
viation.

Theorem 2.6 (Median minimizes absolute error). If E[|X|] < ∞, then we have
Med(X) ∈ arg minb∈R E[|X − b|]. More generally, if E[|X|] < ∞, then QX(τ) ∈
arg minb∈R E[ρτ (X − b)] where τ ∈ (0, 1) and ρτ (u) := u(τ − 1{u < 0}) is the check
function for the τ th quantile.

Exercise 2.7. Prove the first statement of Theorem 2.6 for the case where X is
absolutely continuous with positive density. Hint: Use the Leibniz integral rule.

The relationship of multiple random variables can also be quantified using expec-
tation. The following gives a measure of comovement between two random variables.

Definition 2.10 (Covariance). The covariance of univariate random variables X and
Y is

Cov(X, Y ) := E[(X − E[X])(Y − E[Y ])] =
∫
R2

(x− E[X])(y − E[Y ])dFX,Y (x, y).

The correlation of X and Y is Corr(X, Y ) := Cov(X, Y )/
√

Var (X) Var(Y ).

Covariance is large when X and Y tend to deviate to the same direction (positive
or negative) from the corresponding means, but also when the scales of X and Y
are large. For example, if you want to measure the correlation of prices of an Uber
ride and a Lyft ride, the covariance becomes 10,000 times larger by switching the
units from dollars to cents. Correlation removes this scale dependence by dividing
by the standard deviations. It is immediate by the Cauchy–Schwarz inequality that
−1 ≤ Corr(X, Y ) ≤ 1.

Exercise 2.8. Variance and covariance relate nicely with each other. For instance,
the variance of a sum X + Y can be calculated with the knowledge of the variances
and covariance of X and Y . Show that Var(aX+bY ) = a2 Var(X)+2abCov(X, Y )+
b2 Var(Y ).
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It is straightforward to generalize the variance and covariance to vectors.
Definition 2.11 (Variance and covariance for vectors). The variance of a k × 1
random vector X is a k × k matrix

Var(X) := E[(X − E[X])(X − E[X])′].
The covariance of k- and ℓ-dimensional random vectors X and Y is a k × ℓ matrix

Cov(X, Y ) := E[(X − E[X])(Y − E[Y ])′].
For a vector X, the diagonal elements of Var(X) are the variances of the individual

components of X, and the off-diagonal elements are the covariances of the pairs of the
components. For this, Var(X) is sometimes called the variance-covariance matrix.

There are alternative formulas for the variance and covariance, which are simpler
to deal with in some cases.
Theorem 2.7 (Properties of variance). For random vectors X and Y with finite
variances, the following hold.

(i) Var(X) = E[XX ′] − E[X]E[X]′.
(ii) Cov(X, Y ) = E[XY ′] − E[X]E[Y ]′.

(iii) If X and Y are independent, then Cov(X, Y ) = 0.
Exercise 2.9. Prove Theorem 2.7.
Remark 2.3. The expectation of the product E[XY ′] is called the cross moment of X
and Y .
Exercise 2.10. For a bivariate normal random variable (X, Y ), show that X and Y
are independent if and only if they are uncorrelated.
Exercise 2.11. Construct a pair of random variables (X, Y ) such that each of them
is marginally standard normal, they are uncorrelated, but they are not independent.

The central scaled third and fourth moments are known as the skewness and
kurtosis and appear in finance.
Definition 2.12 (Skewness and kurtosis). The skewness of a univariate random vari-
able X is given by E

[(
X−E[X]√

Var (X)

)3]
. The kurtosis of X is given by E

[(
X−E[X]√

Var (X)

)4]
.

The skewness is positive when the distribution is pinched to the right and negative
when pinched to the left (Figure 2.5). The kurtosis is large when the distribution has
heavy tails and small when it has light tails (Figure 2.6).

2.4. Conditional Expectation and Conditional Probability

It is often the case that we want to infer a random variable with the knowledge
of another. For example, a labor economist may be interested in how the wage is
determined by education and experience (Mincer equation); a financial economist
may want to know whether the announcement of a merger leads to abnormal stock
returns (event study) or if low interest rates induce risk-taking behaviors (“reaching
for yield”).
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Figure 2.5. Skewness measures asymmetry.
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Figure 2.6. Kurtosis measures the tail thickness.

Updating of the randomness due to the knowledge of another is precisely described
by the notion of conditional probability and conditional expectation. When the con-
ditioning event has a positive probability, the classical ratio formula P (A | B) =
P (A ∩B)/P (B) gives the conditional probability of event A conditional on event B.
However, we want to have a more general definition that does not require a positive
denominator. Standard construction of such generalization builds on measure theory
and is quite complicated. Here, I give a version that would be more accessible. Inter-
estingly, the general definition of conditional expectation precedes that of conditional
probability.

Definition 2.13 (Conditional expectation). For k- and ℓ-dimensional random vec-
tors X and Y and a measurable function g : Rk → Rℓ, g(X) is called the conditional
expectation of Y given X if E[(Y − g(X))′h(X)] = 0 for every measurable bounded
function h : Rk → Rℓ. In this case, we denote g(X) by E[Y | X] and g(x) by
E[Y | X = x].

Remark 2.4. E[Y | X = x] is well defined almost everywhere even if P (X = x) = 0
for every x.

This can readily be extended to more involved conditioning; for example, E[Y |
X ≥ 0] can be defined as E[Y | Z = 1] with a new random variable Z := 1{X ≥ 0}.

Exercise 2.12. Let [
X
Y

]
∼ N

([
0
0

]
,

[
σ2

X ρσXσY

ρσXσY σ2
Y

])
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be a bivariate normal vector with −1 < ρ < 1. Show that E[Y | X = x] = ρ σY

σX
x.

Hint: We want to show that E[(Y − ρ σY

σX
X)h(X)] = 0 for every bounded h. Derive

the joint pdf of
[

X
Y −ρ

σY
σX

X

]
as in Exercise 2.3 and verify that Y − ρ σY

σX
X is mean zero

and independent of X.

Exercise 2.13. Show that E[f(X)Y | X = x] = f(x)E[Y | X = x]. You may
assume for simplicity that f is real-valued, bounded, and strictly positive.

Theorem 2.8 (Existence of conditional expectation). Let X, Y be random variables.
If E[|Y |] < ∞, then E[Y | X] exists.

Remark 2.5. The converse does not hold. Let Y be Cauchy and X = Y . Then
E[Y | X] = X and E[|Y |] = ∞.

The following says that the expectation of conditional expectation is expectation.

Theorem 2.9 (Law of iterated expectations). Let X and Y be random variables. If
E[|Y |] < ∞, then E[E[Y | X]] = E[Y ].

Proof. Let h ≡ 1 in the definition of conditional expectation. ■

Exercise 2.14. Denote g(x) = E[Y | X = x] and h(y) = E[X | Y = y]. Assuming
that g is injective, show that if h = g−1, then X and Y are perfectly dependent, that
is, Y = g(X).

There is an explicit formula for the conditional expectation for absolutely contin-
uous variables.

Theorem 2.10 (Conditional expectation formula). Let X and Y be univariate ran-
dom variables and E[|Y |] < ∞. If (X, Y ) has a joint pdf pX,Y , then

E[Y | X = x] =
∫∞

−∞ tpX,Y (x, t)dt∫∞
−∞ pX,Y (x, t)dt =

∫∞
−∞ tpX,Y (x, t)dt

pX(x) ,

provided that the denominator is not zero.

Proof. Let h be bounded and denote
∫∞

−∞ and pX,Y by
∫

and p. By Fubini’s
theorem,

E
[(
Y −

∫
tp(X,t)dt∫
p(X,t)dt

)
h(X)

]
=
∫∫

yh(x)p(x, y)dxdy−
∫ ∫

tp(x,t)dt∫
p(x,t)dt

h(x)
∫
p(x, y)dydx = 0.

■

It is known that the best predictor of Y given X in terms of the mean squared
deviation is the conditional expectation of Y given X. Theorem 2.5 is a corollary of
this when X is constant.

Theorem 2.11 (Projection). If E[Y 2] < ∞, then E[Y | X = x] = arg ming(·) E[(Y −
g(X))2] where g runs through all measurable functions.
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Proof. Let g be bounded.1 Write E[(Y − g(X))2] = E[(Y − E[Y | X] − g(X) +
E[Y | X])2] = E[(Y −E[Y | X])2]−2E[(Y −E[Y | X])(g(X)−E[Y | X])]+E[(g(X)−
E[Y | X])2]. The first term is irrelevant for minimization. The second term is
zero by the definition of conditional expectation. The third term is minimized at
g(X) = E[Y | X]. ■

The notion of conditional probability is defined through the conditional expecta-
tion of an indicator.

Definition 2.14 (Conditional probability). Let X and Y be k- and ℓ-dimensional
random vectors. The conditional probability of an event A given X = x is defined
by P (A | X = x) := E[1{A} | X = x]. Specifically, the conditional cdf of Y given
X = x is defined by FY |X(y | x) := E[1{Y ≤ y} | X = x]. If FY |X(· | x) is
absolutely continuous, the conditional pdf of Y given X = x is defined analogously
to Definition 2.4 and denoted by pY |X(· | x).

Exercise 2.15. Show that if X and Y are independent, the conditional cdf of Y
given X is the same as the marginal cdf of Y .

An explicit formula for the conditional pdf for absolutely continuous variables is
available.

Theorem 2.12 (Conditional density formula). Let X and Y be univariate random
variables. If (X, Y ) has a joint pdf pX,Y , then

pY |X(y | x) = pX,Y (x, y)∫∞
−∞ pX,Y (x, t)dt = pX,Y (x, y)

pX(x) ,

provided that the denominator is not zero.

Proof. Applying Theorem 2.10 to FY |X(y | x) = E[1{Y ≤ y} | X = x], we find

FY |X(y | x) =
∫∞

−∞ 1{t ≤ y}pX,Y (x, t)dt
pX(x) =

∫ y
−∞ pX,Y (x, t)dt

pX(x) .

Then, the claim follows by the Leibniz integral rule. ■

This formula indicates that there are three equivalent ways to represent the joint
distribution (Figure 2.7),

pX(x)pY |X(y | x) = pX,Y (x, y) = pY (y)pX|Y (x | y).
The left formula sees the randomness of (X, Y ) in sequence; we first observe X, and
then observe Y with the knowledge of X. This representation is suitable when there
is a direction X → Y , e.g., when we observe the characteristics of a used car (X)
and want to predict its price (Y ), or when we raise the corporate tax (X) and want
to know its consequences on the corporate behavior (Y ). The middle formula sees
their randomness on simultaneous, equal terms. This is suitable when there is no
prespecified direction of observation, e.g., when we want to optimize the portfolio
over various assets (X and Y ). The right formula is the same as the left with the

1Since bounded functions are dense in L1, this is without loss of generality.
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pY |X(y | x)pY |X(y | x)

pX(x)

x

y

(a) pX(x)pY |X(y | x). This
decomposition emphasizes
how the knowledge of X af-
fects the uncertainty of Y .

pX,Y (x, y)

x

y

(b) pX,Y (x, y). This rep-
resentation emphasizes the
joint uncertainty of X and
Y .

pX|Y (x | y)

pY (y)

x

y

(c) pY (y)pX|Y (x | y). This
decomposition emphasizes
how the knowledge of Y af-
fects the uncertainty of X.

Figure 2.7. Three equivalent representations of the distribution of X
and Y .

roles of X and Y reversed. Note that the left representation does not require that X
realize before Y ; it is just that X be observed before Y .

Another implication of this is Bayes’s rule: pY |X(y | x) = pY (y)pX|Y (x | y)/pX(x).
This says that the uncertainty of Y given X can be recovered if we know the uncer-
tainty ofX given Y and their marginals. For example, when we have a macroeconomic
model pX|Y (x | y) of how economic parameters Y affect economic variables X and
have a prior pY (y) on the parameters Y , we can derive the distribution pY |X(y | x) of
the parameters that are consistent with the observed data X [HS16].2

Exercise 2.16. When X is continuous and Y is discrete, create a figure as in Fig-
ure 2.7 to illustrate the three representations.

Conditional variance is defined analogously to conditional expectation.

Definition 2.15 (Conditional variance). For random vectors X and Y , the condi-
tional variance of Y given X is defined by Var(Y | X) := E[(Y −E[Y | X])(Y −E[Y |
X])′ | X] if exists.

The following is a decomposition of the uncertainty Var(Y ) into the uncertainty
of prediction Var(E[Y | X]) and the prediction of the uncertainty after prediction
E[Var(Y | X)].

Theorem 2.13 (Law of total variance). Let X and Y be random vectors such that
E[Y Y ′] < ∞. Then Var(Y ) = Var(E[Y | X]) + E[Var(Y | X)].

Exercise 2.17. Prove Theorem 2.13.

2The marginal distribution pX(x) of X is only for scaling and actually not needed.



18 2. PROBABILITY THEORY

2.A. Defining Densities for Arbitrary Random Variables

The density is one of the most fundamental concepts in probability theory, yet
its definition requires a nontrivial adjustment for random variables that are not ab-
solutely continuous.

Consider a Bernoulli random variable X that takes value 1 with probability p and
0 with 1 − p. The cdf of X is FX(x) = (1 − p)1{x ≤ 0} + p1{x ≤ 1}, which is
discontinuous and not differentiable. Therefore, the expectation of f(X) is given as
a sum, not as a familiar integral, i.e.,∫

R
f(x)dFX(x) = (1 − p)f(0) + pf(1).

However, we can still define the density of X if we use a non-Lebesgue measure. Let
µ be the measure that has unit masses at 0 and 1, so its “distribution function” is
µ(x) = 1{x ≤ 0} + 1{x ≤ 1}. Then, for a function pX(x) = px(1 − p)1−x, we have∫

R
f(x)dFX(x) =

∫
R
f(x)pX(x)dµ,

so pX acts as the “pdf” of X with respect to µ. This µ is called the dominating
measure and pX the Radon–Nikodym derivative of the distribution of X with respect
to µ. Of course, this pX is not the only function that satisfies this property. For
example, we could have very well defined it as (1 − p)1{x = 0} + p1{x = 1} or
(1 − p) + (2p − 1)x and enjoyed the same density property. This non-uniqueness is
usually not an issue, so we can pick one that is easier to handle. For example, the
first definition is nice when we consider the logarithm of the density.

Note that this also depends on the choice of the dominating measure. If we use a
measure λ that has the Lebesgue measure plus unit masses at 0 and 1 (so its integral
is given by

∫
R f(x)dλ =

∫∞
−∞ f(x)dx + f(0) + f(1)), then pX(x) = (1 − p)1{x =

0} + p1{x = 1} is the only function (among the three discussed) that satisfies the
density property. Non-uniqueness of the dominating measure is neither a problem;
rather, paramount is the fact that for any two random variables—be it continuous,
discrete, or whatever—we can always find a common dominating measure such that
both random variables have densities with respect to it.

A virtue of the pdf is that it represents the likeliness of X at one single point, as
opposed to the cdf representing the likeliness of realizing at anywhere below a point.
So, for a given realized value x, we can now compare the “likelihood” of any two
probability distributions, take the ratio, or even differentiate them. Figure 2.8 shows
one choice of the dominating measure and the density for the random variable defined
in Figure 2.1.
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(a) A density of X with respect to λ.
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(b) Distribution function of λ.

Figure 2.8. The random variable X in Figure 2.1 is not absolutely
continuous but has a density with respect to the measure λ in (b).





CHAPTER 3

Asymptotic Theory of Probability

Nothing is more uncertain
than the duration of
individual life: nothing is
more certain than the average
continuance of life.

insurance guide and
handbook, Cornelius

Walford, 1868

Asymptotic statistics gives justification to many statistical methods used in social
science; it shows that various reasonable but distinct probability structures lead to
a common simplified structure when the sample size is large. This observation legit-
imizes the use of the simplified structure as an approximation while remaining open
to various possibilities of different probability structures.

As such, the limit theorems in this section are stated in terms of the limit as the
sample size “n” goes to infinity. This does not mean that the actual sample size of
the data must continue to grow. A useful analogy is the linear approximation of a
smooth function. Let us say that a smooth function admits a linear approximation
at a point x0. We know that the precision of this approximation improves as the
point of evaluation gets closer and closer to the point of expansion x0. However, this
does not mean that the linear approximation is only useful at x0. (Indeed, there is
no need to approximate it at x0.) Instead, the linear approximation is useful around
x0 but we just need to keep in mind that the precision of the approximation depends
on how close the point of evaluation is to x0. Similarly, despite the limit theorems
being stated as n → ∞, the approximation still stands for a finite and non-growing
dataset.

3.1. Modes of Convergence

Unlike the convergence of a deterministic sequence, the convergence of a random
sequence takes place in many different ways. There are three modes of convergence
that are usually introduced in a graduate level statistics course—almost sure conver-
gence, convergence in probability, and convergence in distribution. For an educated
user of statistics, it is important to understand the latter two; for a developer of
statistics, the first one ise sometimes used in proofs. For completion, I introduce all
three.

21
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(a) Xn in Example 3.1 converges to 0 in
probability but not almost surely. For every
u ∈ [0, 1], Xn(u) fluctuates between 0 and 1
infinitely many times as n → ∞, albeit less
and less frequently.
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(b) Zn in Exercise 3.1 converges to 0 in
probability and almost surely. In statisti-
cal applications, it is practically impossible
to tell apart Xn from Zn in many cases.

Figure 3.1. Almost sure convergence and convergence in probability.

Definition 3.1 (Almost sure convergence). A sequence of random vectors Xn con-
verges almost surely to a random vector X, written Xn →as X, if

P
(

lim
n→∞

∥Xn −X∥ = 0
)

= 1.

Definition 3.2 (Convergence in probability). A sequence of random vectors Xn con-
verges in probability to a random vector X, written Xn →p X, if for every ε > 0

lim
n→∞

P (∥Xn −X∥ > ε) = 0.

Remark 3.1. Xn →p X is also denoted as plimn→∞ Xn = X.
Remark 3.2. Almost sure convergence can equivalently be formulated as

P
(

lim
n→∞

∥Xn −X∥ > ε
)

= 0

for every ε > 0. This reveals that the only difference between →as and →p is the
order of lim and P .

Almost sure convergence implies convergence in probability as we will see below
(Theorem 3.2 (i)), but not the converse.
Example 3.1 (Counterexample to almost sure convergence). Let U ∼ U [0, 1] and
define Xn(U) = 1{∑n

k=1
1
k

≤ U + m <
∑n+1

k=1
1
k
, ∃m ∈ N} (Figure 3.1a). Then, for

every realization u ∈ [0, 1] of U , Xn(u) hits 1 infinitely many times, although less
and less often. This means that Xn(u) does not converge for every u and hence the
probability that limn→∞ |Xn(U) − 0| = 0 takes place is zero, that is, Xn ̸→as 0. On
the other hand, for every small ε > 0 and fixed n, we have P (|Xn(U)−0| > ε) = 1

n+1 ,
which converges to 0. Therefore, Xn →p 0.

The following exercise explains why almost sure convergence is of less interest.
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Exercise 3.1 (Almost sure representation). Let U ∼ U [0, 1] and define Zn(U) =
1{U < 1

n+1} (Figure 3.1b). Show that Zn has the same marginal distribution as Xn

in Example 3.1 and Zn →as 0. In statistical applications, the “sample size” n is fixed,
and there is no way to tell apart Xn from Zn by observation.

The last mode of convergence is the most important.

Definition 3.3 (Convergence in distribution). A sequence of random vectors Xn

converges in distribution to a random vector X, written Xn ⇝ X, if for every real-
valued bounded continuous function f ,

lim
n→∞

E[f(Xn)] = E[f(X)].

Remark 3.3. By analogy, we also write Xn ⇝ F to mean that Xn ⇝ X for X ∼ F .
Convergence in distribution is also called weak convergence or convergence in law and
may be denoted with →d or ⇒. I personally prefer⇝ because it not only looks “weak”
but nicely combines the “distributed as” symbol ∼ with the convergence arrow →.

There are many equivalent formulations of the convergence in distribution. While
Definition 3.3 is readily generalizable to various random objects such as random func-
tions, the following alternative is often handier when it comes to real-valued random
vectors.

Theorem 3.1 (Portmanteau lemma). Let Xn and X be random vectors. Then,
Xn ⇝ X if and only if limn→∞ FXn(x) = FX(x) for every x at which FX is continuous.

Proof. [vdV98, Lemma 2.2]. ■

Example 3.2 (Fraud counts). Let p be the probability that a credit card transaction
is fraudulent. For n transactions, let Xn be the number of frauds. Then, Xn follows
a binomial distribution with parameters n and p, i.e., P (Xn = k) = nCkp

k(1 − p)n−k.
Suppose that the fraud detection algorithm improves at the same time the customer
base grows, so p = 1/n as n → ∞. Then, Xn converges in distribution to a Poisson
distribution with parameter 1. To see this, note that

P (Xn = k) = n!
(n− k)!k!n

−k
(

1 − 1
n

)n−k

.

Using Stirling’s approximation,
n!

(n− k)!n
−k ≈

(
n

n− k

)1/2
e−k

(
1 + k

n− k

)n−k

−→ 1.

Thus, we find P (Xn = k) → e−1/k! and the convergence follows from Theorem 3.1.

Exercise 3.2. Consider a sequence of random variables Xn whose cdf is given by
FXn(x) = 1 − (1 − x/n)n for 0 ≤ x ≤ n. Find F such that Xn ⇝ F .

Exercise 3.3. Consider a sequence of random variables Xn whose pdf is given by
1 − cos(nπx) for x ∈ [0, 1]. Show that the pdf of Xn does not converge but Xn

converges in distribution.
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The three modes of convergence are nested as follows.

Theorem 3.2 (Relation of modes of convergence). Let c be a nonrandom constant.
(i) Xn →as X implies Xn →p X.

(ii) Xn →p X implies Xn ⇝ X.
(iii) Xn ⇝ c implies Xn →p c.
(iv) Xn ⇝ X and Yn ⇝ c imply Xn + Yn ⇝ X + c and XnYn ⇝ cX.

Proof. (i) For every n, we have supm≥n P (∥Xm − X∥ > ε) ≤ P (supm≥n ∥Xm −
X∥ > ε). Thus, lim supn→∞ P (∥Xn −X∥ > ε) ≤ P (lim supn→∞ ∥Xn −X∥ > ε).

(ii) I prove the univariate case. See [vdV98, Theorem 2.7 (ii)] for a general proof.
For every ε > 0,

FXn(x) = P (Xn ≤ x,X ≤ x+ ε) + P (Xn ≤ x,X > x+ ε)
≤ P (X ≤ x+ ε) + P (|Xn −X| > ε) = FX(x+ ε) + P (|Xn −X| > ε).

Similarly, FX(x−ε) ≤ FXn(x)+P (|Xn−X| > ε). Thus, FX(x−ε)−P (|Xn−X| > ε) ≤
FXn(x) ≤ FX(x+ε)+P (|Xn−X| > ε). Since Xn →p X, we have P (|Xn−X| > ε) → 0
as n → ∞ for every ε > 0. Therefore, lim supn FXn(x) and lim infn FXn(x) are
bounded by FX(x − ε) and FX(x + ε) for every ε > 0. If x is a continuity point of
FX , then FXn(x) → FX(x) by the squeeze theorem.

(iii) I prove the univariate case. See [vdV98, Theorem 2.7 (iii)] for a general proof.
Since every x ̸= c is a continuity point of Fc, if Xn ⇝ c, we have FXn(x) → 1{x > c}.
Then, P (|Xn −c| > ε) ≤ P (Xn ≤ c−ε)+P (Xn > c+ε) = FXn(c−ε)+1−FXn(c+ε),
which converges to 0 for every ε > 0.

(iv) [vdV98, Lemma 2.8]. ■

Remark 3.4. Theorem 3.2 (iv) is known as Slutsky’s lemma.

Another useful fact is that each mode of convergence is preserved under continuous
transformations.

Theorem 3.3 (Continuous mapping theorem; [vdV98, Theorem 2.3]). Let g : Rk →
Rm be continuous at almost every realization of X. Then, the following hold.

(i) Xn →as X implies g(Xn) →as g(X).
(ii) Xn →p X implies g(Xn) →p g(X).

(iii) Xn ⇝ X implies g(Xn)⇝ g(X).

Exercise 3.4. Convergence in distribution does not imply convergence of moments
[Dav21, Section 23.4]. Construct a sequence Xn that converges in distribution to a
standard normal distribution but E[Xn] and E[X2

n] do not converge to 0 and 1.

3.1.1. Stochastic big O small o notation. In Taylor expansion, the lower-or-
der terms start to dominate the higher-order terms as the point of evaluation ap-
proaches the point of expansion, that is, the linear term dominates the quadratic,
and the quadratic dominates the cubic. In other words, the quadratic term is more
ignorable than the linear term, and the cubic term is more ignorable than the linear
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and quadratic terms. Similar situations arise in statistics. In statistics, the “appo-
raching the point of expansion” corresponds to the sample size going to infinity. This
is because when the sample size is infinity, it is as if the true population model is
observed, and hence it makes a reasonable evaluation point for a large dataset.

In doing so, some approximation errors are more ignorable than others, and the
following big O small o notation becomes handy. Intuitively, Xn = oP (Rn) means
that Xn is more ignorable than Rn, and Xn = OP (Rn) means that Xn is as ignorable
(or as important) as Rn. The precise definition is as follows.
Notation. The notation Xn = oP (1) means that Xn →p 0. The notation Xn =
oP (Rn) for a sequence of (possibly random) variables Rn means that Xn = YnRn for
some Yn = oP (1). The notation Xn = OP (1) means that Xn is uniformly tight, that
is, for every ε > 0 there exists M such that supn P (∥Xn∥ > M) < ε. The notation
Xn = OP (Rn) means that Xn = YnRn for some Yn = OP (1).
Example 3.3. For Xn ∼ U [0, 1/n], we have Xn = oP (1) and Xn = OP (1/n). For
Xn ∼ U [n, n+ 1], we have Xn = OP (n), Xn − n = OP (1), and Xn = oP (n2).
Exercise 3.5. Show that Xn →p X implies Xn − X = oP (1) and that Xn ⇝ X
implies Xn = OP (1).
Exercise 3.6. Construct a sequence such that Xn = OP (1/n) and E[Xn] ̸= O(1/n).
Exercise 3.7. Construct a sequence such that Xn = OP (1/n) and P (|Xn| > u) ̸=
O(1/n) for every fixed u > 0.

3.2. Two Limit Theorems for Averages

There are three fundamental limit theorems for averages in probability theory:
the law of large numbers (LLN), the central limit theorem (CLT), and the law of
iterated logarithm (LIL). In a nutshell, the LLN states that the average converges to
the mean; the CLT states that the convergence rate is 1/

√
n and the shape of the

deviation approaches normality where the mean and variance are inherited from the
elements of the average; the LIL states that the maximum deviation from the mean is
eventually bounded by a vanishing function of n (Figure 3.2). The LLN and CLT are
of great importance in statistics. The LIL, on the other hand, while proven useful in
number theory, is not so much of interest to statisticians [vdV98, Section 2.7], hence
omitted.

Hereafter we denote the sample average by X̄n := 1
n

∑n
i=1 Xi.

3.2.1. Laws of large numbers. There are two versions of the law of large
numbers, the weak and the strong. The strong concludes almost sure convergence,
and the weak concludes convergence in probability. As we discussed in Section 3.1,
convergence in probability is enough for us, so the strong LLN is not of our concern.
Theorem 3.4 (Weak law of large numbers). Let X1, X2, . . . be i.i.d. random vectors.
If E[∥X∥] < ∞, then X̄n →p E[X].

Proof. [vdV98, Proposition 2.16] and the remark thereunder. ■
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Figure 3.2. Three fundamental limit theorems. The LIL bound
(green line) does not even exceed the 95% prediction interval by the
CLT (red line) until much larger n.

Remark 3.5. Note that E[∥X∥] < ∞ requires only the first absolute moment of each
component of X even if ∥ · ∥ is a Euclidean norm. To see why, observe that for
X = (X1, X2), ∥X∥ = ∥(X1, 0) + (0, X2)∥ ≤ ∥(X1, 0)∥ + ∥(0, X2)∥ = |X1| + |X2|.

The LLN upvotes the use of an average as the key summary statistic in various
applications. For example, if an airline company wants to predict whether one pas-
senger shows up to a booked flight, it can be highly uncertain; however, if they want
to predict the percentage of no-shows among all passengers in one flight, it is much
less uncertain and would be very close to the probability of a no-show, thanks to the
LLN. Another example, a long-term investor may decide on their portfolio based on
the average historical performance instead of the performance of the very last period,
as the average would be a more precise predictor of the future performance in the
long run.

3.2.2. Central limit theorem. The LLN does not tell us how close the average
is to the expectation for a finite n. This is not always practical since we sometimes
want to quantify (i) how fast the average converges to the expectation and (ii) how
the average converges to the expectation. The CLT refines the LLN in both ways
when a stronger condition can be imposed. Surprisingly, it turns out that a very
mild assumption not only gives the rate of convergence but also characterizes the
distribution of the average.

In particular, when each element Xi has a variance, the CLT first states that
the distribution of an average X̄n shrinks at the same speed as 1/

√
n. This gives a

rough idea of how close we can expect X̄n is to E[X] for a finite n. However, there
can be many ways in which something can converge to something at the speed of
1/

√
n (Figure 3.3). What is astonishing about the CLT is that, without any more

additional assumptions, it states that X̄n converges in the same way a sequence
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Degenerate at E[X]

X̄nNormal Uniform

CLT

Figure 3.3. There are many ways for a distribution to shrink to de-
generacy, but the CLT asserts that the distribution of an average con-
sorts along with the normal sequence that goes degenerate at rate 1/

√
n.

of normal distributions converges to E[X]. In a more precise (but still informal)
expression, we may understand this as

X̄n ⇝ N
(
E[X], 1

n
Var(X)

)
.

Note that the variance of the normal distribution shrinks with 1/n. Since the variance
is in the squared units, X̄n itself shrinks with 1/

√
n.

Although this formulation neatly captures the intuition of the phenomenon, it is
mathematically a bit bizarre in the sense that the “limit” on the RHS is a moving
target that still depends on n. To make the variance independent of n, we may
multiply both sides by

√
n, so that

√
nX̄n ⇝ N(

√
nE[X],Var(X)).

Then again, the mean now depends on n, so let’s subtract
√
nE[X] from both sides,

and we obtain the “mathematically correct” version of the statement.

Theorem 3.5 (Central limit theorem). Let X1, X2, . . . be i.i.d. random vectors with
E[XX ′] < ∞. Then

√
n(X̄n − E[X]) = 1√

n

n∑
i=1

(Xi − E[X])⇝ N(0,Var(X)).

Proof. [vdV98, Proposition 2.17 and Example 2.18]. ■

The central limit theorem is arguably the most important theorem in asymptotic
statistics. Historically, the name was given to indicate that it played the central role
in the collection of limit theorems (“central” limit theorem), although some French
authors now call it le théorème de la limite centrale (“central limit” theorem).

Note that the only essential assumption of the CLT is the existence of the second
moment; we make no assumption on the shape of the distribution of each Xi, yet
we have as a conclusion the shape of X̄n. Thus, the distribution of an average is
a consequence, not an assumption. It frees us from making a strong distributional
assumption on the data and enables us to do valid inference for which the knowledge
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of distribution is imperative. The cost, on the other hand, is the largeness of the
sample, which is often tolerable in economic applications.
Example 3.4 (Insurance). Let us say that the car accident happens with probability
1%. If an accident happens, the driver incurs a loss of 100 (in whatever units); if no
accident occurs, she incurs no loss. In particular, the distribution of the loss X for
a driver is P (X = 0) = 99% and P (X = 100) = 1%. If the driver wants to hedge
the risk by maintaining the liquid asset worth the maximum 99.9% loss (i.e., by
controlling the VaR at 99.9%), then she must keep the amount of 100 as a dormant,
unusable money in her bank account.

If an insurance company covers the loss of n independent drivers, then the distribu-
tion of the loss (total insurance claim) nX̄n is approximately N(nE[X], nVar(X)) =
N(n, 99n) by the CLT (and Slutsky’s lemma). This company’s 99.9% VaR is n +
3.09

√
99n ≈ n+ 30.75

√
n, so they can hedge the risk by collecting the premium of at

least 1 + 30.75/
√
n. For n = 100, this value is 1.31 and, for n = 1,000, it goes as low

as 1.03. This means that the more insureds the insurance company has, the lower the
premium it can set and the more efficient the risk sharing becomes.

From a driver’s perspective, paying the insurance premium of just over 1 frees
up her asset worth 100 and covers her entire risk associated with car accidents (at
least in pecuniary terms), so insurance sounds like a great economic institution. From
an economist’s perspective, however, the story looks different; since larger insurance
companies can offer lower premiums, this seems to suggest that the market is always
driven toward monopoly, which comes with all the bad consequences. Can we avoid
this? How do we sustain competition while encouraging risk sharing?
Exercise 3.8. Instead of an arithmetic average, consider X̃n = (X1X2 · · ·Xn)1/

√
n,

where X1, . . . , Xn are i.i.d. positive random variables with E[(logXi)2] < ∞. Derive
the asymptotic distribution of X̃n. Hint: Take the logarithm and apply the CLT.
Remark 3.6. While convergence in distribution itself does not imply convergence of
moments (Exercise 3.4), the condition of the CLT does imply that Var(

√
nX̄n) con-

verges to Var(X); in fact, Var(
√
nX̄n) = Var(X) for every n.

Remark 3.7. There are many variants of the CLT with relaxed assumptions.
• The CLT for independent but not identically distributed (i.n.i.d.) random

variables with finite variances is known as the Lindeberg–Feller CLT [vdV98,
Proposition 2.27] and is used in cross-sectional econometrics.

• There are CLTs for time seires dependence with finite variance [Dav21,
Chapter 25], which are used in time series econometrics.

• There is also a CLT that does not assume a particular dependence structure
[Dav21, Theorem 25.1].

• When the variance is infinite, the generalized CLT asserts that the average
converges to an α-stable distribution [Dav21, Theorem 24.23]. The α-stable
distributions occasionally appear in the research of fat tails in finance.

• When an average of random functions is of interest, there may be a functional
CLT that concludes convergence to a Gaussian process. This convergence is
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often considered under a uniform metric, in which case it is specifically called
the uniform CLT [Dud14].

Exercise 3.9 (CLT and dependence). Although the assumption of i.i.d. observations
can be relaxed, zero pairwise correlation is certainly not enough for a CLT. Construct
a sequence X1, X2, . . . such that E[Xi] = 0, Var(Xi) = σ2, and Cov(Xi, Xj) = 0 for
every i ̸= j, but

√
nX̄n does not converge in distribution to a normal.

The CLT is still an approximation, and one can go one more step and ask “but how
close is the distribution of the average to the normal distribution?” The Berry–Esseen
theorem can bound the deviation from the normal distribution, which is sometimes
used in finance.

Proposition 3.6 (Berry–Esseen). Denote by Φ the cdf of a standard normal distri-
bution. Let X1, X2, . . . be i.i.d. univariate random variables with E[|X|3] < ∞ and
Z̄n :=

√
nVar(X)−1/2(X̄n − E[X]). Then, there exists a constant 0.4 < C < 0.5 such

that

sup
x∈R

|FZ̄n
(x) − Φ(x)| ≤ C√

n
E
[∣∣∣∣∣X − E[X]√

Var (X)

∣∣∣∣∣
3]
.

Proof. A stronger version is proved in [SS93, Theorem 3.5.2]. ■

3.3. The Delta Method

Sometimes a quantity of interest is not an average per se but a transformation
thereof. Fortunately, convergence towards normality is preserved under smooth trans-
formation. In particular, a smooth transformation of an average, g(X̄n), converges in
distribution to a normal distribution. This is because the average X̄n converges to a
tighter and tighter normal distribution by the CLT, and a smooth transformation of a
shrinking quantity approaches a linear transformation, so the normality is preserved
under a linear operation (Figure 3.4a). Conceptually, this is a continuous mapping
theorem (Theorem 3.3) where the map becomes closer and closer to a linear map.

Theorem 3.7 (Delta method). Let Xi be a k-dimensional random vector and g :
Rk → Rℓ be differentiable at E[X] with an ℓ× k Jacobian g′(E[X]). If X̄n follows the
CLT, then

√
n(g(X̄n) − g(E[X]))⇝ N

(
0, g′(E[X]) Var(X)g′(E[X])′

)
.

Proof. By Taylor’s theorem,
√
n(g(X̄n) − g(E[X])) = g′(E[X])

√
n(X̄n − E[X]) +

√
n o(∥X̄n − E[X]∥),

where o(·) satisfies 1
t
o(t) → 0 as t → 0. So, the remainder vanishes as

√
n∥X̄n − E[X]∥ · o(∥X̄n − E[X]∥)

∥X̄n − E[X]∥
= OP (1) · oP (1) = oP (1).

Slutsky’s lemma (Theorem 3.2 (iv)) implies that the first term converges in distribu-
tion to N(0, g′(E[X]) Var(X)g′(E[X])′). ■
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√
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Figure 3.4. The delta method.

Remark 3.8. Theorem 3.7 holds even when g′(E[X]) = 0 in the sense that
√
n(g(X̄n)−

g(E[X])) converges in distribution to 0. However, to extract a nondegenerate distri-
bution, we need to look at a higher-order term. For example, n(g(X̄n) − g(E[X]))
may converge in distribution to (a multiple of) a chi-square distribution if the second
derivative exists and is nonzero (Figure 3.4b).

Exercise 3.10. Related to Exercise 3.8, but now consider the geometric average
X̆n = (X1X2 · · ·Xn)1/n. Find the asymptotic distribution of X̆n.

Exercise 3.11. Let X1, X2, . . . be i.i.d. and each have the pdf p(x) = 1
2x

2e−x
1{x >

0}. Under appropriate scaling, derive the asymptotic distributions of the arithmetic
average (X1+· · ·+Xn)/n, the geometric average (X1 · · ·Xn)1/n, the harmonic average
n(X−1

1 + · · · +X−1
n )−1, and the quadratic average

√
(X2

1 + · · · +X2
n)/n.

3.4. Extreme Value Theory for Extremes

The limit theorems for averages are extremely powerful as many quantities we
encounter in statistics are represented as averages. However, some applications do
involve quantities other than averages. A notable example is the extremes. For
instance, the financial risk is sometimes measured by the Value-at-Risk, which is
defined as the maximal loss the investor may incur with some large probability, say
99%. In the sample of historical returns, this corresponds to the 99% percentile of the
loss distribution. In economics, some auction data may only contain the winning bids,
i.e., the highest bids of all bids submitted to respective auctions. In meteorology, the
temperature may be recorded as the daily maximum and minimum. Such “extreme”
values cannot be represented as averages, and as such their behaviors may differ
significantly from averages.
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Figure 3.5. Three types of convergence for extremes.

There is a branch of probability theory called the extreme value theory (EVT),
which deals with the approximation of such quantities. As surprising as it is, even the
extreme observation (whose value is essentially determined by one observation) elicits
regularity when the dataset out of which it is picked is large. In this sense, the EVT
is the approximation theory for “rare” events when the CLT is the approximation
theory for “ordinary” events. Just like an average (mostly) distributes as a normal
distribution, an extreme distributes as a generalized extreme value (GEV) distribution,
which consists of three types of distributions.1

The simplest example to illustrate how it happens is the maximum of i.i.d. ob-
servations. We use the following notation. For univariate i.i.d. random variables
X1, . . . , Xn, we denote their rearrangement into an ascending order by X(1) ≤ X(2) ≤
· · · ≤ X(n). We call X(1), . . . , X(n) the order statistics. Therefore, X(n) is the maxi-
mum of n observations. Now, the maximum of bounded random variables tends to
converge to a type III distribution, as the following example illustrates.

Example 3.5 (Maximum of uniform variables). The cdf of the maximum X(n) of n
independent standard uniform variables is given by FX(n)(x) = P (X1 ≤ x, . . . , Xn ≤
x) = P (X1 ≤ x) · · ·P (Xn ≤ x) = xn for 0 ≤ x ≤ 1. Now, consider the linear
transformation Y = (X(n)−b)/a for some a > 0 and b. The cdf of Y is FY (y) = FX(b+
ay) = (b + ay)n = bn(1 + ay/b)n → bn exp(nay/b). Therefore, if we set a = 1/n and
b = 1, the cdf of Y converges pointwise to exp(y) for y ≤ 0. In light of Theorem 3.1,
Y converges in distribution to the reversed standard exponential distribution, which
is a special case of the Weibull (extreme value type III) distribution. Note that this
also implies that X(n) − 1 = OP (1/n), so X(n) converges much faster than an average
would (Figure 3.5a).

The maximum of exponentially tailed random variables tends to converge to a
type I distribution. The type I distribution is also used as a foundation for logistic
regression (Section 8.3.2).

1Interestingly, an intermediate quantile such as a median is also determined by the value of one
observation but asymptotes to a normal distribution (Example 4.1).
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Example 3.6 (Maximum of exponential variables). The cdf of the maximum of n
independent standard exponential variables is FX(n)(x) = (1−e−x)n for x ≥ 0. The cdf
of Y = (X(n) −b)/a for a > 0 is FY (y) = [1−exp(−b−ay)]n → exp(−n exp(−b−ay)).
If we set a = 1 and b = log n, then FY converges pointwise to exp(− exp(−y)). Thus,
Y converges in distribution to the standard Gumbel distribution, which is an extreme
value type I distribution. In this case, X(n) glides off to infinity at rate log n, but
X(n) − log n stays OP (1) (Figure 3.5b).

The maximum of fat-tailed (polynomially tailed) random variables tends to con-
verge to a type II distribution.

Example 3.7 (Maximum of Pareto variables). The cdf of the maximum of n in-
dependent unit Pareto variables is FX(n)(x) = (1 − 1/x)n for x ≥ 1. The cdf of
Y = (X(n) − b)/a for a > 0 is FY (y) = [1 − 1/(b + ay)]n → exp(−n/(b + ay)). If we
set a = n and b = 0, then FY converges pointwise to exp(−1/y) for y > 0. Thus, Y
converges in distribution to the unit Fréchet distribution, which is an extreme value
type II distribution. Here, X(n) bloats at rate n, so X(n)/n = OP (1) (Figure 3.5c).

Exercise 3.12. Derive the asymptotic distribution for the maximum of independent
Pareto variables with parameter 2 that have the cdf FX(x) = 1 − 1/x2 for x ≥ 1.

Just as the CLT does, the EVT allows us to conduct inference on extremes without
making much distributional assumptions on individual observations. The detailed
treatment of the EVT is out of the scope of this course. I refer the interested reader
to [EKM97].



CHAPTER 4

Principles of Estimation

Measure what is measurable,
and make measurable what is
not so.

Galileo Galilei, quoted in
galilée by thomas henri

martin, 1868

Statistical analysis is depicted in Figure 4.1. It starts with modeling, which speci-
fies the parameter θ and the model P . The model is the set P of candidate probability
distributions we deem possible, and the parameter is some characteristic θ of the prob-
ability distribution. In this sense, θ can be regarded as a function defined on P . The
set of all values of θ spanned by P is denoted by Θ and is called the parameter
space. The parameter may be split into two parts: the parameter of interest and
the nuisance parameter, which we use for the sake of modeling but are not interested
in knowing. After the modeling stage, we observe the sample X from an unknown
probability distribution and infer θ to conclude the analysis. This last step is divided
into two parts: estimation and inference.

Estimation is the process of formulating a guess θ̂ on θ as a function ofX. The map
X 7→ θ̂ is called the estimator, and the specific value of θ̂ calculated with the realized
value of X is called the estimate. The goal of estimation includes constructing an
estimator that works under reasonable assumptions and having as precise an estimator
as possible. Inference is the process of assessing how much information X contains
about θ, such as quantifying the uncertainty of θ̂ and making a judgement about
a hypothesis on θ. The goal of inference includes yielding an interpretable result
on which to take action and drawing as strong a conclusion as possible. Usually,

Model P ∈ P
Parameter θ ∈ Θ

Sample X ∼ P

Observation

Estimation and inference

Figure 4.1. Statistical analysis.

33
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Figure 4.2. Empirical and population cumulative distribution func-
tions.

estimation precedes inference, but some applications consist solely of estimation or
solely of inference.

4.1. Construction of Estimators

As stated earlier, the parameter of interest is given as a map θ : P → Θ from the
model P to the parameter space Θ. In most cases, Θ is (a subset of) a Euclidean
space, but it can also be a space of functions or more complicated objects.

A natural point to start the discussion is the case where θ is an identity, that is,
Θ = P , so the probability distribution itself is our target.

4.1.1. Empirical distribution. When we observe i.i.d. univariate random vari-
ables X1, . . . , Xn from an unknown distribution P , a naive yet powerful guess about
P is that it takes values {X1, . . . , Xn} with equal probability. This guess is called the
empirical distribution (or empirical measure) and is denoted by Pn. The cdf of Pn is
called the empirical distribution function and takes the form

Fn(x) := 1
n

n∑
i=1

1{Xi ≤ x}.

Note that this is not continuous (let alone absolutely continuous), so the empirical
distribution does not have a pdf (Figure 4.2).

The empirical distribution function has the nice property that at every point x,
its value Fn(x) converges to a normal distribution centered at the true value F (x)
with variance F (x)[1 − F (x)]. This is not even hard to prove.

Theorem 4.1 (Convergence of empirical distribution). For every F and every x ∈ R,
√
n(Fn(x) − F (x))⇝ N(0, F (x)[1 − F (x)]).

Proof. Observe that 1{Xi ≤ x} is a Bernoulli random variable that takes 1 with
probability F (x). So, E[1{Xi ≤ x}] = F (x) and Var(1{Xi ≤ x}) = F (x)[1 − F (x)].
Then, the claim follows from the CLT. ■



4.1. CONSTRUCTION OF ESTIMATORS 35

(a) Pointwise 50% confidence band con-
structed with Theorem 4.1.

(b) Uniform 50% confidence band con-
structed with Proposition 4.3.

Figure 4.3. Asymptotic pointwise and uniform confidence bands for
F .

Indeed, much stronger results are known to hold. Remind us that the model P
here is the set of all univariate distribution functions and the parameter space is the
set of all univariate cdfs, say F . Therefore, we are estimating a function. Now, if we
measure the distance of two functions by the maximum vertical distance, that is, by

∥f − g∥∞ := sup
x∈R

|f(x) − g(x)|,

it is known that convergence as in Theorem 4.1 still holds.
Proposition 4.2 (Glivenko–Cantelli; [vdV98, Theorem 19.1]). For every F ,

∥Fn − F∥∞
as−→ 0.

Proposition 4.3 (Donsker; [vdV98, Theorem 19.3]). For every F ,
√
n(Fn − F )⇝ GF in ∥ · ∥∞,

where GF is a Gaussian process with a mean function identically 0 and a covariance
function Cov(GF (x),GF (y)) = F (x ∧ y)[1 − F (x ∨ y)].

The random function
√
n(Fn − F ) is called the empirical process. These results

can be used to construct a uniform confidence band for F (Figure 4.3) or to construct
a test of a hypothesis about the entire functional form of F (Kolmogorov–Smirnov
test).

What’s nice about the empirical distribution is that it captures all of the informa-
tive randomness of i.i.d. observations (in technical terms, it is a sufficient statistic for
P ). So, almost any statistic (i.e., almost any function of the data) can be written as a
function of the empirical distribution, to which the delta method might be applicable.
Proposition 4.4 (Functional delta method; [vdV98, Theorem 20.8]). Let ϕ : F →
R be a functional defined on a set of cdfs. If ϕ is differentiable in a suitable sense
with the derivative map ϕ′

F , then
√
n(ϕ(Fn) − ϕ(F ))⇝ ϕ′

F (GF ).
In many cases, this is an overkill way to derive the distribution of a finite-dimen-

sional estimator, but sometimes this is the only (or most general) way. These results
can be extended to multivariate cases and more.
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4.1.2. Plug-in estimators. When θ is not an identity, a straightforward way
to construct an estimator is to plug in the empirical distribution. Recall that θ is a
function defined on the model P . If θ is also defined at Pn (either because P includes
Pn or θ can be extended to Pn), then θ̂ := θ(Pn) is a natural estimator for θ.

Example 4.1 (Descriptive statistics). The mean E[X] can be regarded as a param-
eter P 7→

∫
xdP (x). Thus, the plug-in estimator of the mean is the sample average

En[X] =
∫
xdPn(x) = 1

n

∑n
i=1 Xi = X̄n. If Xi has variance, the CLT implies that√

n(X̄n − E[X])⇝ N(0,Var(X)).
Similarly, the variance Var(X) and covariance Cov(X, Y ) are given as parameters

P 7→
∫
(x−

∫
xdP )2dP and P 7→

∫
(x−

∫
xdP )(y−

∫
ydP )dP . So, their plug-in estima-

tors are
∫
(x−

∫
xdPn)2dPn = 1

n

∑n
i=1(Xi − X̄n)2 and

∫
(x−

∫
xdPn)(y−

∫
ydPn)dPn =

1
n

∑n
i=1(Xi − X̄n)(Yi − Ȳn). If X and Y have the fourth moments, it is straightforward

to compute their asymptotic distributions using the CLT.
The αth quantile can be seen as a parameter P 7→ F−1(α), where F−1 denotes the

left-continuous generalized inverse of the cdf as in Definition 2.2. Its plug-in estimator
is the sample αth quantile Qn(α) = F−1

n (α) = inf{x ∈ R : Fn(x) ≥ α}. If F has a
positive density at F−1(α), then the asymptotic distribution of

√
n[F−1

n (α) −F−1
X (α)]

can be calculated using Proposition 4.4 as N(0, α(1 − α)/pX ◦ F−1
X (α)2) [vdV98,

Example 20.5].

Exercise 4.1 (Quantile function and order statistics). Let X1, . . . , Xn be univariate
i.i.d. random variables. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the rearrangement of
X1, . . . , Xn in an ascending order, so X(k) is the kth smallest observation. We call
X(1), . . . , X(n) the order statistics. Show that the empirical quantile function is given
by Qn(u) = X(⌈nu⌉), where X(k) is the kth smallest observation as introduced in
Section 3.4 and ⌈a⌉ is the smallest integer greater than or equal to a.

Example 4.2 (Z-estimation). A parameter may be given as the zero of an equation
ψ(P, θ) = 0. For example, the parameters of a consumer’s utility function may be
given as the values that satisfy the Euler equation. In this case, the plug-in estimator
is the solution to ψ(Pn, θ) = 0. The condition ψ(P, θ) = 0 is called the moment
condition in econometrics. For a specific example, consider the capital asset pricing
model (CAPM). It decomposes the excess return of a stock Y into the market excess
return X and the return orthogonal to it α + ε, that is, Y = α + βX + ε for some
(α, β) such that E[Xε] = 0 and E[ε] = 0. In other words, the parameter θ = (α, β)
is defined by the zero of E[X(Y − α − βX)] = 0. The plug-in estimator finds the
value of (α̂, β̂) such that En[Xi(Yi − α̂ − β̂Xi)] = 1

n

∑n
i=1 Xi(Yi − α̂ − β̂Xi) = 0 and

En[Yi − α̂ − β̂Xi] = 1
n

∑n
i=1(Yi − α̂ − β̂Xi) = 0, which yields β̂ = Ĉov(X, Y )/V̂ar(X)

and α̂ = Ȳn − β̂X̄n. The asymptotic distribution of (α̂, β̂) follows from Theorem 7.1.
More generally, there are generic theorems to derive the asymptotic distribution of a
Z-estimator [vdV98, Chapter 5].
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Example 4.3 (M -estimation). Another prevalent situation is that a parameter of in-
terest is given as the maximizer, θ(P ) = arg maxϑ M(P, ϑ). Then, the plug-in estima-
tor is given by the maximizer of the sample objective function θ̂ = arg maxϑ M(Pn, ϑ).
If M is differentiable in a suitable sense in θ, this reduces to a Z-estimation by tak-
ing the first-order condition (FOC), ∂

∂θ
M(Pn, θ̂) = 0.1 M -estimation is also called

extremum estimation. A concrete example is the conditional Value-at-Risk (VaR)
estimation. Let Y be the return of the portfolio and X be the information avail-
able for prediction, such as the lagged returns or the values of other assets. We
are interested in the τth quantile of Y conditional on X, which is a solution to
minf E[ρτ (Y − f(X))] where ρτ is the check function for the τth quantile (recall The-
orem 2.6) [Koe05, KCHP18]. Then, the plug-in estimator of the conditional VaR is
a solution to minf En[ρα(Yi − f(Xi))] over some class of functions. There are general
theorems to derive the asymptotic distribution of an M -estimator [vdV98, Chapter
5].

The word “plug-in estimator” is by no means reserved for plugging in the empir-
ical distribution. For example, if a parameter is identified by ψ(θ, η) = 0 and η is
estimated by some method, the solution θ for ψ(θ, η̂) = 0 in is also called a plug-in
estimator.

4.1.3. Other estimators. There are various reasons why we may use estimators
other than the plug-in. Sometimes the plug-in estimator does not exist; at other times,
a different type of an estimator has a nicer property than the plug-in.

Example 4.4 (Bessel’s correction). Denote µ = E[X] and σ2 = Var(X). Some may
argue that the plug-in estimator for σ2 is not desirable as it underestimates σ2,

E[ 1
n

∑
i(Xi − X̄)2] = 1

n

∑
i E[(Xi − µ− X̄ + µ)2]

= 1
n

∑
i E[(Xi − µ)2] − 2 1

n

∑
i E[(Xi − µ)(X̄ − µ)] + E[(X̄ − µ)(X̄ − µ)]

= σ2 − 2
n2
∑

i

∑
j E[(Xi − µ)(Xj − µ)] + 1

n2
∑

j

∑
k E[(Xj − µ)(Xk − µ)]

= σ2 − 2
n
σ2 + 1

n
σ2 = n−1

n
σ2.

So, the plug-in estimator on average gives an estimate smaller by the factor of n−1
n

. On
the other hand, the adjusted estimator V̂ar(X) = 1

n−1
∑

i(Xi − X̄)2 has expectation
equal to σ2. This is usually what is called the sample variance. For the same reason,
we use the sample covariance Ĉov(X, Y ) = 1

n−1
∑

i(Xi − X̄)(Yi − Ȳ ) as our default
covariance estimator. Since the difference of n-scaling and (n − 1)-scaling vanishes
asymptotically, it follows by Slutsky’s lemma that the asymptotic distributions of
these are the same as the plug-in estimators in Example 4.1.

Exercise 4.2. Show that the square root of the sample variance
√

1
n−1

∑
i(Xi − X̄)2

underestimates the standard deviation. Hint: Use Jensen’s inequality.
1Conversely, a Z-estimation problem ψ(P, θ) = 0 can be made into an M -estimation by writing

θ = arg minϑ ∥ψ(P, θ)∥2.
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Figure 4.4. Kernel density estimation. If the bandwidth h is sent
to 0 at an appropriate rate relative to n, the kernel density estimator
converges to the true density.

Example 4.5 (Kernel density estimation). A canonical example in which a simple
plug-in estimator does not exist is the density estimation, which appear, e.g., in
auction research [GPV00]. Let θ(P ) be the pdf of P . Then θ(Pn) does not exist
as the empirical distribution is a step function. One way to estimate the pdf is the
kernel density estimator

θn(Pn)(x) = 1
nh

n∑
i=1

K
(
x−Xi

h

)
,

where K is some nice function that integrates to one (often is itself a pdf), and h is a
tuning parameter that converges slow enough to 0 as n → ∞ so that nh still diverges
[vdV98, Chapter 24]. Figure 4.4 illustrates this method.

Example 4.6 (Bayes estimator). A Bayesian decision maker has a prior π(θ) on θ
and the model X ∼ Pθ. The model can be interpreted as the conditional distribution
of the data X given θ, so the product π(θ)pθ(x) gives the joint pdf of the parameter
and the data (θ,X). When she observes X, she updates her belief about θ using the
conditional distribution of θ given X, called the posterior,

π(θ | X) = π(θ)pθ(x)∫
π(θ)pθ(x)dθ .

She may then use this posterior to minimize her loss or risk [LC98, Chapter 4] or
calculate the posterior mode or mean to obtain a point estimate. Bayesian inference
is foundational in decision theory. Statisticians also find Bayes estimators appealing
as appropriately chosen priors lead to nice characteristics even from a frequentist’s
perspective [vdV98, Chapter 10].

Example 4.7 (Bootstrap estimation). Some estimators are so complicated that we
cannot analytically derive their distributions. However, if we know the true data
generating process P , we can simulate a lot of samples X ∼ P on a computer and
calculate θ̂(X) many times to simulate the sampling distribution of θ̂. The bootstrap
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(a) Accurate but not precise estimator.
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(b) Precise but not accurate estimator.

Figure 4.5. Decomposition (θ̂ − θ) = (E[θ̂] − θ) + (θ̂ − E[θ̂]). The
single arrow indicates a nonrandom quantity; the double arrows indicate
random quantities.

procedure replaces the unknown P with the empirical distribution Pn. Thus, we draw
a set of n observations X∗ from Pn (so some observations may be drawn more than
once while some others may not appear at all) and calculate θ̂(X∗). We then repeat
this process many times to “estimate” the sampling distribution of θ̂. This way we
can obtain the sampling distribution purely computationally without having to take
on the burden of doing any theory. For example, the standard error of θ̂(X) can be
estimated by the sample standard error of this collection of θ̂(X∗). This obviously
sounds too good to be true—using the data and only data to estimate their own
inherent uncertainty. The name bootstrap comes from the fact that it smacks of
pulling oneself up by one’s own bootstraps.2 Bootstrap is an example of more general
resampling methods.

4.2. Bias and Variance of Estimators

In order to discuss which estimator to employ or how to construct a new estimator,
we need to have clear desiderata. A natural criterion is to prefer an estimator that is
close to the true parameter in terms of the mean squared error.

Definition 4.1 (Mean squared error). The mean squared error (MSE) of θ̂ is given
by MSE(θ̂) := E[(θ̂ − θ)′(θ̂ − θ)].

There are two distinct channels through which the MSE can become large. The
first is an inherent variation of θ̂; Figure 4.5a presents an estimator whose average
location is close to θ (“accurate”) but its random variation is huge. The second is
the overall misposition of θ̂; Figure 4.5b shows an estimator whose variation is small
(“precise”) but its center is far off from θ. This motivates us to decompose the MSE
into the measures of accuracy and precision, respectively called the bias and variance.

2In the original tale of The Surprising Adventures of Baron Munchausen, Munchausen pulls his
own pigtail to drag himself out of a swamp, but “bootstrapping” is undeniably a better name than
“pigtailing.”
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Figure 4.6. Distributions of σ̂2
b and σ̂2

p when Xi ∼ N(µ, σ2) and the
bias-variance tradeoff.

Definition 4.2 (Bias and variance). The bias of an estimator θ̂ of θ is defined by
Bias(θ̂) := E[θ̂] − θ. The variance of θ̂ is Var(θ̂) := E[(θ̂ − E[θ̂])(θ̂ − E[θ̂])′].

The variation of an estimator around the true value is then decomposed into the
bias and the variance, thanks to the orthogonality of the second moment.

Theorem 4.5 (Decomposition of MSE). MSE(θ̂) = Bias(θ̂)′ Bias(θ̂) + tr(Var(θ̂)).
Exercise 4.3. Prove Theorem 4.5. Hint: Use the add-and-subtract strategy.

When we try to find an estimator that achieves a smaller MSE, we often encounter
a situation in which improving the bias increases the variance and lowering the vari-
ance worsens the bias. This phenomenon is known as the bias-variance tradeoff. An
illustrative example is the estimation of variance.
Example 4.8 (Bias-variance tradeoff). Let σ̂2

p = 1
n

∑
i(Xi−X̄)2 and σ̂2

b = 1
n−1

∑
i(Xi−

X̄)2. As seen in Example 4.4, σ̂2
p underestimates σ2 in that Bias(σ̂2

p) < 0 while σ̂2
b

is accurate in that Bias(σ̂2
b ) = 0. However, the variance of σ̂2

b is larger than that of
σ̂2

p, that is, Var(σ̂2
p) < Var(σ̂2

b ). Thus, elimination of the bias introduces additional
variance (Figure 4.6). This is the bias-variance tradeoff. Moreover, in terms of the
MSE, σ̂2

p does better, that is, MSE(σ̂2
p) < MSE(σ̂2

b ). Therefore, neither estimator is
unequivocally preferable over the other.

While it may be possible to bring the bias down to zero, it is not reasonable to
expect that the variance of any sensible estimator is zero. So, the second natural
criterion is to focus on the “most accurate” estimators and prefer one with a smaller
variance. The estimator that has zero bias is called unbiased.
Definition 4.3 (Unbiasedness). An estimator θ̂ of θ is unbiased if Bias(θ̂) = 0.

Remark 4.1. Provided that θ̂ has a second moment, we can equivalently formulate
unbiasedness as E[(θ̂− θ)2] ≤ E[(θ̂− b)2] for every b (Theorem 2.5). This formulation
allows us to generalize unbiasedness under other risk measures. For example, median
unbiasedness of an estimator θ̂ can be defined by replacing the mean squared error
with the mean absolute error, E[|θ̂ − θ|] ≤ E[|θ̂ − b|] for every b (Theorem 2.6).
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4.3. The Cramér–Rao Bound

What is the lowest possible variance attainable by an unbiased estimator? We
answer this question for a specific class of models that is simple and smooth. In
particular, we assume that the probability distribution of the data X is completely
characterized by a finite-dimensional parameter θ. By this, I mean that once you
know the value of θ, that uniquely pins down the probability distribution of X, so
the pdf of X can be indexed by θ, i.e., pn,θ(x1, . . . , xn). Such a model is called the
parametric model. Below are some examples of such models.
Example 4.9 (Normal location). Let X = (X1, . . . , Xn) be a sample of i.i.d. k-
dimensional random variables from N(θ,Σ) where Σ is known and symmetric positive
definite. Since Σ is known, there is one-to-one relationship between the distribution
and θ.
Example 4.10 (Bernoulli). Let X = (X1, . . . , Xn) be a sample of i.i.d. Bernoulli
random variables with θ = P (Xi = 1). Since a value of θ completely characterizes
the probability of X, there is one-to-one relationship between the distribution and θ.

There are, of course, models that fall outside this class, such as the following.
Example 4.11. Let X = (X1, . . . , Xn) be a sample of i.i.d. k-dimensional random
variables from an unknown distribution. Let θ = E[Xi] be the mean of Xi that we
are interested in. There are many possible distributions that give rise to the same
value of θ, so there is no one-to-one relationship between the distribution of X and θ.

Going back to the parametric models, suppose θ̂ is an unbiased estimator for
θ. Then, we have E[θ̂(X)] = θ by definition. Letting pn,θ be the pdf of the data
X = (X1, . . . , Xn), the LHS can be written as

∫
θ̂(x)︸ ︷︷ ︸

does not depend on θ

depends on θ︷ ︸︸ ︷
pn,θ(x) dx.

Since the function θ̂(x) only depends on x and not on θ, the change in E[θ̂(X)]
in response to the change in θ can only be induced through the change in pn,θ(x)
(Figure 4.7). If Var(θ̂(X)) is very small, then θ̂(x) is almost a constant function in
x, and so would E[θ̂(X)] be in θ. For E[θ̂(X)] to move along with θ, therefore, the
function θ̂(x) must vary “enough” that E[θ̂(X)] can respond properly to the change
in pn,θ. This argument suggests that the variance of an unbiased estimator cannot be
too small.

Now, the rough sketch of the derivation of the bound goes as follows. Let θ be a
univariate parameter and θ̂ unbiased. Then, we have E[θ̂ − θ] = 0 for every θ. The
resulting constraint on the changes in response to θ can be obtained by differentiating
this identity with respect to θ,

d

dθ

∫
(θ̂(x) − θ)pn,θ(x)dx =

∫
(θ̂(x) − θ)ṗn,θ(x) −

∫
pn,θ(x)dx = 0.
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Figure 4.7. Since θ̂ does not depend on θ, E[θ̂] moves only in response
to the change in pn,θ. For θ̂ to be unbiased, θ̂(x) cannot be too flat,
which gives rise to a lower bound on Var(θ̂).

Since the second integral is 1, this yields

1 =
∫

(θ̂(x) − θ) · ṗn,θ(x)
pn,θ(x) · pn,θ(x)dx ≤

√
Var(θ̂(X))E

[
ṗn,θ(X)2

pn,θ(X)2

]
by the Cauchy–Schwarz inequality. Rearranging this gives a desired bound

Var(θ̂(X)) ≥ E
[
ṗn,θ(X)2

pn,θ(X)2

]−1

.

The ratio ṗn,θ/pn,θ represents the rate of change of pn,θ in response to θ. If pn,θ changes
very sensitively to a minuscule change in θ, then there is not much need for θ̂ to be
sensitive to x, and hence its variance can be smaller. Conversely, if pn,θ is not so
responsive to the change in θ, then θ̂ must in turn be responsive enough to x in order
to have E[θ̂] chase after θ. Thus, it makes sense that the bound is reciprocal to the
“size” of ṗn,θ/pn,θ. In a sense, the size (second moment) of ṗn,θ/pn,θ can be viewed as
the information about θ contained in the model pn,θ; the larger it is, the more precise
the estimator can possibly be. This argument generalizes to the parametric models
that are “smooth” in the following sense.

Let X = (X1, . . . , Xn) be a sample of n observations. The sample X has a joint
pdf at every x = (x1, . . . , xn) indexed by θ ∈ Θ ⊂ Rk and denoted by pn,θ(x). The
density is assumed to be positive on a common support, that is, if pn,θ(x) > 0 for
some θ at some x, then we have pn,θ′(x) > 0 for every θ′ ∈ Θ at this x. The density
function is called the likelihood function when it is seen primarily as a function of
θ. Since there is a one-to-one correspondence between the probability distribution
and θ, we denote by Eθ[f(X)] the expectation of f(X) when X follows pn,θ. The log
likelihood function ℓn,θ(x) := log pn,θ(x) is assumed to be differentiable with respect
to θ, and its derivative ℓ̇n,θ(x) = ∂

∂θ
ℓn,θ(x) = ṗn,θ(x)/pn,θ(x), called the score function,

is a k× 1 vector-valued function continuous in both θ and x. The Fisher information
matrix In,θ := Eθ[ℓ̇n,θ(X)ℓ̇n,θ(X)′] is assumed to be invertible.
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Theorem 4.6 (Bartlett identities). Let pn,θ be smooth as described above. Then, the
expectation of the score is zero, i.e., Eθ[ℓ̇n,θ(X)] = 0. This means that the Fisher
information is the variance of the score. If, moreover, ℓn,θ is twice differentiable
with the second derivative continuous in both θ and x, then we have another way to
compute the Fisher information, In,θ = −Eθ[ℓ̈n,θ(X)].

Proof. Since
∫
pn,θdx = 1 and ṗn,θ is continuous in θ and x, we have

Eθ[ℓ̇n,θ(X)] =
∫
ℓ̇n,θpn,θdx =

∫ ∂

∂θ
pn,θdx = d

dθ

∫
pn,θdx = d

dθ
1 = 0,

which is the first identity. If ℓn,θ is twice differentiable,
∂2

∂θ∂θ′ ℓn,θ = ∂

∂θ′
ṗn,θ

pn,θ

= p̈n,θ

pn,θ

−
ṗn,θṗ

′
n,θ

p2
n,θ

= p̈n,θ

pn,θ

− ℓ̇n,θℓ̇
′
n,θ.

If p̈n,θ is continuous in θ and x,

Eθ

[
p̈n,θ

pn,θ

]
=
∫
p̈n,θdx = d2

dθdθ′

∫
pn,θdx = 0.

These yield the second identity. ■

Note that the above calculus holds just as well for a single observation, i.e., when
n = 1. Then, if X is a sample of i.i.d. random variables, the score and information
of the sample can be deduced from those of each observation. To distinguish the
notation for a single observation and for the sample, denote by pθ and ℓθ = log pθ the
pdf and the log likelihood of each observation. Since pn,θ(x) = pθ(x1) · · · pθ(xn), we
have

ℓn,θ(x) =
n∑

i=1
ℓθ(xi), ℓ̇n,θ(x) =

n∑
i=1

ℓ̇θ(xi),

In,θ = Eθ

[
n∑

i=1

n∑
j=1

ℓ̇θ(Xi)ℓ̇θ(Xj)′
]

= Eθ

[
n∑

i=1
ℓ̇θ(Xi)ℓ̇θ(Xi)′

]
= nEθ[ℓ̇θ(Xi)ℓ̇θ(Xi)′] = nIθ.

Example 4.9 (Normal location, continued). Recall that X = (X1, . . . , Xn) is a sam-
ple of i.i.d. normal random variables, N(θ,Σ) where Σ is known. Then, the pdf of
one observation is given by pθ(x) = (2π)−k/2 det(Σ)−1/2 exp(−1

2(x − θ)′Σ−1(x − θ)).
Therefore, one can calculate

ℓ̇θ(x) = Σ−1(x− θ), ℓ̈θ(x) = −Σ−1, Iθ = Σ−1.

So, the Fisher information of the entire data X is In,θ = nΣ−1.

For the Bernoulli example, the pdf does not exist since the cdf is not differentiable.
However, this framework can still be applied with a simple (but advanced) fix given
in Section 2.A.

Example 4.10 (Bernoulli, continued). Recall that X = (X1, . . . , Xn) is a sample of
i.i.d. Bernoulli random variables with θ = P (Xi = 1). Let λ be a measure that has
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unit masses at 0 and 1. Then, the density of a single observation with respect to λ is
given as a probability mass function pθ(x) = θx(1 − θ)1−x. Therefore,

ℓ̇θ(x) = x

θ
− 1 − x

1 − θ
, ℓ̈θ(x) = − x

θ2 − 1 − x

(1 − θ)2 , Iθ = 1
θ(1 − θ) ,

and the Fisher information of the entire data X is given by In,θ = n
θ(1−θ) .

Now we state the general results. Just as derived in the rough sketch, the inverse
of the Fisher information matrix gives the lower bound for the variance of an unbiased
estimator.

Theorem 4.7 (Cramér–Rao bound). Let X = (X1, . . . , Xn) be a sample from a
smooth parametric model pn,θ. Let θ̂(X) be an estimator of θ such that d

dθ′Eθ[θ̂(X)] =∫
θ̂(x)∂pn,θ

∂θ′ dx holds (that is, differentiation under the integral sign). Then, we have
Var(θ̂(X)) ≥ ( d

dθ′Eθ[θ̂(X)])I−1
n,θ( d

dθ′Eθ[θ̂(X)])′. If θ̂ is unbiased, then Var(θ̂(X)) ≥ I−1
n,θ.

Proof. By the Cauchy–Schwarz inequality for matrices [Tri99],

Var(θ̂(X)) ≥ Cov(θ̂(X), ℓ̇n,θ(X)) Var(ℓ̇n,θ(X))−1 Cov(ℓ̇n,θ(X), θ̂(X)).
Since Eθ[ℓ̇n,θ(X)] = 0 (Theorem 4.6), we have Var(ℓ̇n,θ(X)) = In,θ and

Cov(θ̂(x), ℓ̇θ(X)) =
∫
θ̂(x)ℓ̇n,θ(x)′pn,θ(x)dx =

∫
θ̂(x)ṗ′

n,θdx = d

dθ′Eθ[θ̂(X)].

If θ̂ is unbiased, then d
dθ′Eθ[θ̂(X)] = d

dθ′ θ is an identity matrix. ■

Note that Theorem 4.7 does not prove that an estimator attaining this bound
exists.3 But when it does, we know that it is the best estimator in terms of the
variance. We call such an estimator efficient.

Definition 4.4 (Efficiency). An unbiased estimator θ̂ of θ is efficient if it attains the
Cramér–Rao bound, i.e., Var(θ̂) = I−1

n,θ.

Example 4.9 (Normal location, continued). First, the sample average X̄n is un-
biased since E[X̄n] = 1

n

∑
i E[Xi] = θ. Second, the variance of X̄n is Var(X̄n) =

1
n2
∑

i Var(Xi) = Σ/n by independence. This is equal to the Cramér–Rao bound,
I−1

n,θ = Σ/n. Therefore, θ̂ = X̄n is an efficient estimator for θ.

Example 4.10 (Bernoulli, continued). Likewise, the sample average θ̂ = X̄n is an
efficient estimator for θ.

When some assumptions of Theorem 4.7 are violated, there may be an unbiased
estimator that attains a smaller variance than the Cramér–Rao bound.

Example 4.12 (Counterexample). Let X = (X1, . . . , Xn) be i.i.d. observations from
U [0, θ]. Then pθ(x) = θ−1

1{0 < x < θ}, but this density does not satisfy the
common support condition. We can still calculate ℓ̇θ(x) = −θ−1 and ℓ̈θ(x) = θ−2 for

3We revisit this point in Section 6.2.
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0 < x < θ, but then E[ℓ̇θ(X)] ̸= 0 and Iθ = θ−2 ̸= −Eθ[ℓ̈θ(X)] = −θ−2, so even the
Bartlett identities (Theorem 4.6) fail. Also, since ℓn,θ(x) = −n log θ, we have that
In,θ = n2θ−2 = n2Iθ, not In,θ = nIθ. Now, consider the estimator θ̂ = n+1

n
X(n), where

X(n) is the maximum observation. Then, θ̂ is unbiased and has a variance smaller
than the Cramér–Rao bound. To see this, observe that

FX(n)(x) = P (max{X1, . . . , Xn} ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x)
= P (X1 ≤ x) · · ·P (Xn ≤ x) = FX(x)n = xn/θn

for 0 < x < θ, and hence pX(n)(x) = nxn−1/θn. With this, we can calculate

Eθ[X(n)] =
∫ θ

0
nθ−nxndx =

[
nθ−n x

n+1

n+ 1

]θ

0
= nθ

n+ 1 , Eθ[X2
(n)] = nθ2

n+ 2 .

These imply Eθ[θ̂] = θ and Var(X(n)) = n
(n+1)2(n+2)θ

2. So,

Var(θ̂) = (n+ 1)2

n2 Var(X(n)) = θ2

n(n+ 2) < I−1
n,θ = θ2

n2 ,

violating the Cramér–Rao bound.

4.4. Asymptotic Properties of Estimators

The efficiency of the estimator is a very appealing property, and yet it is not always
useful for several reasons. First, not all parameters admit unbiased estimators. Sec-
ond, for many reasonable estimators, we cannot even compute the bias analytically.
Third, we do not want to restrict our attention only to the parametric models. There-
fore, it makes sense to develop some criteria that are weaker but easier to achieve.
For this, asymptotic criteria are the way to go. As we have seen in Chapter 3, the
asymptotic analysis is a type of approximation, and as such, it makes calculation (and
verification of the criteria) a lot easier.

The first desirable asymptotic property of an estimator is consistency, which re-
quires that it converge in probability to the parameter of interest. For example, the
sample average is a consistent estimator for the mean by the LLN (Theorem 3.4).

Definition 4.5 (Consistency). An estimator θ̂ of θ is consistent if θ̂ →p θ.

The next desirable property is that the estimator converges in distribution to a
normal distribution. Again, by the CLT (Theorem 3.5), the sample average is an
asymptotically normal estimator for the mean.

Definition 4.6 (Asymptotic normality). An estimator θ̂ of θ is
√
n-regular if

√
n(θ̂−

θ) ⇝ L for some fixed distribution L that does not depend on θ. An estimator θ̂ is√
n-asymptotically normal if it is

√
n-regular and L = N(0,Σ) for some Σ.

As discussed in Section 3.2.2, note that the variance of θ̂ is Σ/n, not Σ, but the
formal statement multiplies θ̂ by

√
n to have a limit variance that is independent of

n. To emphasize the fact that Σ is the “scaled” variance, Σ is sometimes called the
asymptotic variance.
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Exercise 4.4. Show that a
√
n-asymptotically normal estimator is consistent.

The criteria we developed in Section 4.2 can be translated to asymptotic ver-
sions, namely, an estimator that minimizes the MSE and an unbiased estimator that
minimizes the variance.4 While we do not elaborate it here, these two criteria, inter-
estingly, lead to the same estimator, so there is often one unique estimator preferred
in the asymptotic sense. This optimality criterion can be simply summarized by the
notion of parametric efficiency.

Definition 4.7 (Parametric efficiency). Let {Pθ} be a parametric model with a non-
singular Fisher information matrix Iθ that will be defined in Section 4.3. An estimator
θ̂ of θ is asymptotically parametrically efficient if

√
n(θ̂ − θ)⇝ N(0, I−1

θ ).

Remark 4.2. There is an extension of parametric efficiency to semiparametric models,
called semiparametric efficiency [vdV98, Chapter 25].

In econometrics, a weaker version of efficiency is also used, which only requires
that an estimator have the minimum asymptotic variance among some restricted class
of estimators (e.g., efficient GMM [Hay00, Proposition 3.5]).

4.5. Three Types of Statistical Modeling

If calculating descriptive statistics is about knowing the data, carrying out statis-
tical analysis is about knowing more than the data. The “more” part hinges on the
additional assumption we are willing to buy, and it is informally referred to as the
“model.” There are various assumptions we can make in various situations, and it
is helpful to classify them into three categories: parametric models, semiparametric
models, and nonparametric models.

In practical terms, *parametric models can be described as follows.
(1) Parametric models. The model with a complete description of the probability

structure, including the shape of the distributions. This requires strong
assumptions and tends to yield precise estimators.

(2) Semiparametric models. The model that is half-specified. There is a pa-
rameter of interest, while some other aspects of the probability structure
are left unspecified. This requires mild assumptions and tends to yield fair
estimators.

(3) Nonparametric models. The model that is hardly specified. There is a pa-
rameter of interest, but it is much like a descriptive statistic. This requires
weak assumptions and may yield not-so-precise estimators.

In mathematical terms, the descriptions are a bit involved. Recall that a param-
eter is defined as a function of the probability distribution P 7→ θ(P ).

(1) Parametric models. There is a finite-dimensional parameter θ that fully
characterizes the probability distribution, i.e., there exists a one-to-one cor-
respondence between the parameter and the probability distribution, θ ↔ P .

4Roughly, the minimum MSE estimator corresponds to the local asymptotic minimax theorem
and the minimum variance unbiased estimator to the convolution theorem [vdV98, Chapter 8].
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This implies that the set of probability distributions under consideration does
not span all of the probability distributions, and that the parameter map is
invertible, θ 7→ P (θ). The parameter of interest may be a subset of θ, but
this is usually not an issue.

(2) Semiparametric models. There is a finite-dimensional parameter θ and an
infinite-dimensional parameter η that collectively characterizes the proba-
bility distribution, i.e., (θ, η) ↔ P , and the set of probability distributions
does not span all of the probability distributions. This means that the map
P 7→ θ is not invertible, which makes the theory of semiparametric models
quite complicated. The parameter of interest is usually (a subset of) θ.

(3) Nonparametric models. There is an infinite-dimensional parameter η that
characterizes the probability distribution, i.e., η ↔ P , and the set of proba-
bility distributions may or may not span all of the probability distributions.
Sometimes η is itself taken to be P , and η is the parameter of interest.

Note that they are not mutually exclusive nor nested. For example, if you add a
finite-dimensional parameter to a nonparametric model, it becomes a semiparametric
model and more general than the original nonparametric model.
Example 4.13 (Normal location model). Let Θ = Rk and P = {N(µ,Σ) : µ ∈ Θ}
be the set of all univariate normal distributions with some fixed known variance Σ.
The parameter µ is the mean of the normal distribution, and there is a one-to-one
correspondence between µ and P . This is the normal location model. If we also treat
Σ as an unknown parameter, it is called the normal location-scale model. These are
examples of the parametric model.
Example 4.14 (Single-index model). Suppose there is a triplet (Yi, Xi1, Xi2) ∼ P .
The model P contains all distributions with finite variances and E[Yi | Xi = x] =
g(x′β) for some β ∈ R2 and g : R → R that is smooth. This means that the depen-
dence of Y on X = (X1, X2)′ only comes from the linear term X ′

iβ = β1Xi1 + β2Xi2
(called the index), but the dependence of Yi on this linear term is left unspecified.
The parameter of interest may be both of β and the function g. This is known as the
single-index model and is a special case of the projection pursuit regression. This is
an example of the semiparametric model.
Example 4.15 (Descriptive statistics). Suppose there is a univariate variable Xi ∼ P
and take the model P to be the set of all univariate distributions. Then the cdf of Xi

is well defined for every P ∈ P and can be the parameter of interest. Or, the median
of Xi is also well defined and can be the parameter of interest. This is an example of
the nonparametric model. If we restrict P to span all univariate distributions with
finite variances, then the mean of Xi can be the parameter of interest. This can still
be regarded as a nonparametric model.
Example 4.16 (Nonparametric regression). Suppose there is a pair (Yi, Xi) ∼ P .
Let the model P span all bivariate distributions with finite variances and smooth
conditional expectation E[Yi | Xi = x]. This can equivalently be written as Yi =
g(Xi) + ε where g is smooth and E[ε | Xi] = 0. The parameter of interest is the
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function g. This is known as the nonparametric regression and is an example of the
nonparametric model. We may allow Xi to be multidimensional.



CHAPTER 5

Principles of Statistical Inference

If you torture the data
enough, nature will always
confess.

how should economists
choose? Ronald H. Coase,

1982

Given an estimator of the parameter of interest, many decision problems can be
solved by simply plugging the estimates into the unknown parameters. For exam-
ple, an optimal portfolio may be derived by maximizing the utility function whose
parameters are replaced with their estimates. In some cases, however, the decision
problems cannot be disentangled from the consideration of how close the estimates
are to the true parameter values.

Consider a media calling an election from the results of the exit poll. With the
estimate of the excess vote of 2%, can we conclude that the first runner is winning the
election? Here, the question is not about the value of 2%, but rather about whether
the 2% is a sufficient indicator that the true excess vote is positive. In another
example, consider deploying the Patriot missiles for national defense. Let us say that
the goal of this defense system is to make the probability of successful interception
(taking down incoming ballistic missiles in the sky) as high as 99.9%. If the data
from several test shots give the exact estimate of 99.9%, can we trust that we are
protected with high certainty? More likely, we may be worried about the possibility
that the test shots were merely “good” draws by chance, and the probability of actual
interception may not be as high as expected. How can we guard against such a worst
case scenario?

Although the true parameter values are never known, statistics offers ways to make
reasonable decisions under these circumstances. Consideration of the first question
leads to hypothesis testing and the concept of the p-value; consideration of the second
to the confidence interval.

5.1. Extracting a Simple Experiment

To focus on the essential aspects, statistical inference is often discussed in a vastly
simplified setup. To illustrate the simplification process, take the problem of estimat-
ing the mean θ of a univariate variable X with an unknown finite variance σ2. We
have the sample of n i.i.d. observations X1, . . . , Xn, and we estimate θ by the sample
mean θ̂ = X̄n. By the CLT, we know that θ̂ converges in distribution to N(θ, σ2/n).

49
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θ̂

θ? θ? θ?

σ√
n

Figure 5.1. Normal location model. We draw one and only one ob-
servation θ̂ from a normal distribution N(θ, σ2/n) where θ is unknown
and σ2/n is known.

Although we do not know σ2, it can be regarded as yet another estimation problem
and we can estimate it by the sample variance σ̂2 = 1

n−1
∑(Xi − X̄n)2. Moreover, σ̂2

converges in probability to σ2 by the LLN,1 so the difference between Var(θ̂) = σ2/n

and V̂ar(θ̂) = σ̂2/n vanishes at a rate faster than 1/n, the rate at which Var(θ̂) shrinks
to zero. That is,

V̂ar(θ̂) = Var(θ̂)︸ ︷︷ ︸
O(1/n)

+ V̂ar(θ̂) − Var(θ̂)︸ ︷︷ ︸
oP (1/n)

.

In large samples, therefore, we can ignore the estimation error of V̂ar(θ̂) and pretend
that we know Var(θ̂). Thus, ultimately we have the following simple situation: the
population model N(θ, σ2/n) where we know σ2/n, and we have one and only one
observation θ̂ therefrom (Figure 5.1).

This reduction takes place in many statistical problems. At the beginning, we have
a possibly very complicated population model P and a possibly quite high-dimensional
dataset X (Figure 4.1). Then, we choose an estimation method and estimate θ by
θ̂. In many cases, θ̂ converges in distribution to a normal distribution centered at
θ with variance Var(θ̂), which we can estimate by some consistent estimator V̂ar(θ̂).
By the same logic as above, we can ignore the estimation error associated with the
variance estimator (when the sample size is large), so we assume that we know Var(θ̂).
Thus, we have in our hands the vastly simplified “normal location model” (or “normal
experiment”) with one observation (Figure 5.2). Of course, there can also be other
cases such as θ̂ converges to a non-normal distribution, the mean of θ̂ is not θ, or
the analysis does not involve estimation of θ; however, some form of simplification is
almost always possible and the extracted model is called the experiment.

Exercise 5.1 (Variance estimation). Let X1, . . . , Xn be i.i.d. normal random vari-
ables from N(µ, σ2). Let µ̂ = X̄n and σ̂2 = 1

n

∑n
i=1(Xi − X̄n)2. Show that

P
(
µ̂ ∈

[
µ− 2 σ̂√

n
, µ+ 2 σ̂√

n

])
− P

(
µ̂ ∈

[
µ− 2 σ√

n
, µ+ 2 σ√

n

])
−→ 0.

1If X has a fourth moment, the rate at which σ̂2 converges to σ2 is 1/
√
n by the CLT. Otherwise,

it can be slower.
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Model N(θ,Var(θ̂))

with known Var(θ̂)
One estimate θ̂

Estimation

Inference

Figure 5.2. Normal experiment after estimation.

5.2. Hypothesis Testing

Let us continue on the example of calling an election. When calling an election,
what we are worried about is that the actual winner is different. Assume that there
are only two runners and let θ be the excess vote of candidate A against candidate B
in the actual ballots. After the poll closes, there is a deterministic value of θ which is
unknown until all the ballots are counted. Therefore, there is no “probability” that
candidate A wins; the winner is already determined, and we simply do not know the
result yet. So, how do we assess the likeliness of candidate A being the winner, given
an estimate of θ̂ = 2% and V̂ar(θ̂) = (1.5%)2 from the exit poll?

For this, it is natural to use the fact that θ̂ is observable and random. Since there
is a probability of θ̂ realizing in a certain range, we can use it to measure the likeliness
of a specific value of θ. For example, are we worried that the true excess vote may
be θ = −4% and candidate B wins? Not really, because if that is the case, then
obtaining an estimate of 2% is extremely unlikely. That is, θ̂ distributes according to
a normal distribution centered at −4% with the standard deviation of 1.5%, so 2% is
“four-sigma away” from the mean. But how about θ = 0% (no winner)? This time,
we may very much be worried about the possibility of this scenario, since θ̂ realizing
at 2% is a very conceivable event even if the true excess vote is 0%. Therefore, we
come to the conclusion that we cannot call the election yet and should continue to
collect responses from the exit poll.

Formalization of this reasoning is called hypothesis testing. Mathematically, a
hypothesis is the assertion that θ is in some subset Θ0 of Θ, denoted by H : θ ∈ Θ0.
It often takes the form of an equality or inequality, e.g., H : θ = 0 or H : θ ≥ 0.
A hypothesis that pins down the parameter uniquely (i.e., Θ0 being a singleton) is
called the point (or simple) hypothesis, and a hypothesis that allows multiple values of
the parameter is called the composite hypothesis. The first step of hypothesis testing
is to formulate the hypothesis that we wish to turn down. In this example, the media
wants to turn down the hypothesis H : θ = 0, since then its rejection leads to either
θ > 0 or θ < 0, i.e., there is a winner. This hypothesis we wish to reject is called the
null hypothesis and is denoted by H0. Thus, the expression H0 : θ = 0 means that we
wish to reject the hypothesis that θ is equal to zero.

Let us look at some more examples to solidify the concept. When a labor econ-
omist wants to assess the causal effect θ of a job training program on the chance of
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θ̂ θ0

p-value

(a) The p-value is the area under the hy-
pothesized pdf that is further away from
the hypothesis than θ̂. It follows U [0, 1]
under the null (Exercise 5.4).

θ̂ θ0

t-statistic× σ̂√
n

(b) The t-statistic is the measure of how
many standard errors away θ̂ is from the
hypothesized value. It follows N(0, 1) un-
der the null.

Figure 5.3. Two measures of extremeness of the estimate θ̂ under the
null hypothesis H0 : θ = θ0.

employment, her null hypothesis is H0 : θ ≤ 0, the rejection of which implies that the
job training program improves the chance of employment. When an auditor wants to
guarantee that a client’s compliance rate r is higher than 99%, her null hypothesis is
H0 : r ≤ 99%. The null hypothesis may also take a more complicated form. When
a group of physicists declared the existence of a Higgs boson, their reasoning was by
statistical inference; they plotted the distribution of the invariant mass of the dipho-
ton events and compared it against the theoretical distribution under the assumption
that there is no Higgs boson. In this case, the null hypothesis is that a function
(the distribution) takes a specific shape. Finally, note that even when the ultimate
interest is an inequality, practitioners often casually test the equality hypothesis; e.g.,
the labor economist may test H0 : θ = 0.

When we have a point null hypothesis, H0 : θ = θ0, it pins down the candidate
distribution uniquely. Under this distribution, the probability that θ̂ would have
realized as extreme as it is observed is called the p-value for H0. Visually, it corre-
sponds to the area under the normal pdf that is further than θ̂ from the mean in
either tails (Figure 5.3a). When the null hypothesis is composite, the p-value is cal-
culated as the maximum probability that θ̂ could have realized further away from Θ0
as observed, where maximum is taken over all possible distributions in Θ0 [Was04,
Theorem 10.12].

In the normal location model, how “extreme” θ̂ has realized can also be measured
by how many standard errors away θ̂ is from the hypothesized value θ0. This is called
the t-statistic (Figure 5.3b), that is,2

t := θ̂ − θ0

σ̂/
√
n
.

As θ̂ follows the normal distribution with mean θ0 and variance σ2/n, the t-statistic
follows the standard normal distribution under H0 : θ = θ0. Therefore, it is related

2In finite-sample testing theory, it is called the t-statistic when the denominator is estimated
(i.e., the standard error) and the z-statistic when the denominator is known (i.e., the standard
deviation). We do not make this distinction.
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to the p-value through p = 2[1 − Φ(|t|)], where Φ is the cdf of the standard normal
distribution.

The next step of hypothesis testing is to choose the size and draw a conclusion.
The size is a number of our choice between 0 and 1, intuitively representing our
tolerance toward rejecting a null hypothesis when it is correct (“type I error”); more
precisely, it is the probability of rejection—or a bound thereof—when the null hypoth-
esis is correct. Since our desired conclusion is the rejection of the null hypothesis,
we want to be conservative in reaching that conclusion. Therefore, the size is usually
chosen to be a small number, say 0.05. Then, we reject the null hypothesis if its
p-value is less than the size, and accept it otherwise. Note that the acceptance of a
null hypothesis is not a strong support in favor of the null; it merely indicates that
the dataset was inconclusive for the hypothesis.3 For this reason, some researchers
prefer an alternative expression such as “fail to reject” or “retain” instead of “accept.”

The more critical the consequence of falsely rejecting the null is, the smaller the
size should be. Social science conventionally uses 0.05. The discovery of the Higgs
boson was announced with a size smaller than 10−6, since falsely dismissing the Higgs
boson would substantially delay the progress of science. A firm may make marketing
decisions with a larger size such as 0.1–0.25 as the consequence of ineffective marketing
is usually only pecuniary.

When the sample size increases, the denominator of the t-statistic decreases.
Meanwhile, if the null hypothesis is correct, θ̂ approaches θ0 at the same rate, leaving
the distribution of t unchanged. However, if the null hypothesis is incorrect, then
θ̂ converges to a different value, so the numerator stays roughly constant and t is
pushed away from zero. Therefore, the p-value of a wrong hypothesis gets smaller
and smaller, making the hypothesis more and more likely to be rejected.

Exercise 5.2 (Null hypothesis). Suppose that a financial analyst wants to investi-
gate if a hedge fund produces a positive alpha. What is her null hypothesis?

Exercise 5.3 (Trivial test). Suppose we have θ̂ ∼ N(θ, σ2/n) where σ2/n is known.
Suppose also that we have U ∼ U [0, 1] independent of θ̂. Then, rejecting when
U < 0.05 and accepting when U ≥ 0.05 gives a valid test of H0 : θ = 0 with size 5%,
that is, the probability of rejection when the null hypothesis is correct is 5%. Why is
this test “worse” than the test based on the p-value?

Exercise 5.4 (Distribution of the p-value). Show that the p-value for the hypothesis
H0 : θ = θ0 in the univariate normal location model distributes according to a uniform
distribution U [0, 1] under the null. Hint: Recall Exercise 2.2.

Exercise 5.5 (Distributions under alternatives). If the null hypothesis H0 : θ = θ0
is incorrect, how would the distributions of p and t change? Explain by words.

3This is because we did not control the probability of a “type II error,” the false acceptance of
the null when the null is actually wrong.



54 5. PRINCIPLES OF STATISTICAL INFERENCE

θ̂ θ

confidence
interval

prediction
interval

Figure 5.4. The confidence interval for θ is the flip side of the pre-
diction interval for θ̂; θ is in the confidence interval if and only if θ̂ is
in the prediction interval.

5.3. Confidence Intervals

In the example of national defense, there is no specific value of the interception
probability that we wish to test. Rather, we want to guard against the possibility
of drawing deceptively good estimates. This can be done by taking into account the
“worst case” scenarios that could have given rise to the same estimate.

Suppose that the defense system consists of multiple Patriot missiles and that
each missile has independent probability of interception denoted by θ. Suppose also
that the test shots give an estimate of θ̂ = 70% and V̂ar(θ̂) = (4.6%)2. If we believe
the estimate 70% at its face value, then deploying 6 Patriot missiles is enough to
guarantee a 99.9% interception probability, since 1 − (1 − 70%)6 > 99.9%. However,
our estimate of 70% may be optimistic, and we want to know how conservative we
should be. Should we worry that the true interception probability is 50%? No really,
because then, obtaining an estimate of 70% is very unlikely; it is more than a “four-
sigma” event. How about θ = 65%? For this, we should be worried about it since
observing θ̂ = 70% when the true probability is 65% is conceivable. This consideration
gives rise to a range of plausible values of θ given an estimate θ̂.

Formalization of this is known as the confidence interval. Denote σ2/n = Var(θ̂)
for simplicity. Given some θ, the range of plausible realizations of θ̂ is given by a
prediction interval for θ̂. In particular, if θ̂ is normally distributed, θ̂ realizes within
two standard deviations from the mean with 95% probability (Example 2.10), so the
range [θ − 2σ/

√
n, θ + 2σ/

√
n] gives the 95% prediction interval for θ̂. In turn, we

want the range of θ such that the observed θ̂ is in the prediction interval of every θ
therein. This turns out to be easy since θ̂ is in [θ − 2σ/

√
n, θ + 2σ/

√
n] if and only

if θ is in [θ̂ − 2σ/
√
n, θ̂ + 2σ/

√
n]. This latter interval is called the 95% confidence

interval for θ (Figure 5.4). Mathematically,

P
(
θ̂︸︷︷︸

random
observable

∈
[
θ − 2 σ√

n
, θ + 2 σ√

n

]
︸ ︷︷ ︸

nonrandom
unobservable

)
= 95% ⇐⇒ P

(
θ︸︷︷︸

nonrandom
unobservable

∈
[
θ̂ − 2 σ√

n
, θ̂ + 2 σ√

n

]
︸ ︷︷ ︸

random
observable

)
= 95%.

It is important to understand that the randomness of the confidence interval comes
from the randomness of θ̂. This means that once θ̂ realizes (that is, once you obtain
an estimate using the dataset), there is no randomness involved in the confidence
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interval. Therefore, when you see an interval of, e.g., [−1, 1], it is not correct to think
that there is a 95% chance that the true θ is in this range; instead, there was a 95%
chance that this range could have realized and contained θ. Once you observe a solid
interval, whether the true θ is within it is simply deterministic and unknown. Thus,
while the confidence interval can be roughly thought of as giving the range of likely
values for θ, this likeliness is given not as a probability, only as our “confidence.”4

Back to the national defense example, we may pick the worst case parameter from
the confidence interval to guard against the bad draw case. In particular, we may
assume that the true intercept probability is as bad as 70%−2×4.6% = 60.8%. Then,
deploying 8 Patriot missiles will make the intercept probability larger than 99.9%.

Remark 5.1. More generally, the (1 − α)-confidence set for θ is a random subset of
Θ such that the probability that it contains true θ is at least 1 − α. This is by no
means unique, and sometimes a preference is given toward a narrower confidence set
or a set with a desired shape (e.g., connected or rectangular).

5.4. Equivalence of the Two

The two concepts we have introduced, hypothesis testing and the confidence in-
terval, are indeed only different sides of the same coin. In particular, the following
statements are all equivalent.

• The hypothesis θ = θ0 is rejected with size 5%.
• The p-value for the hypothesis θ = θ0 is less than 5%.
• The t-statistic for the hypothesis θ = θ0 is greater than 2 in magnitude.
• The 95% confidence interval does not contain θ0.

Here, “2” is called the critical value and “95%” the confidence level. This equivalence
is rooted in the fact that all of these statements are mere paraphrases of the following
equation. Given an estimator θ̂ ∼ N(θ, σ2/n), consider

P

(
|θ̂ − θ| > c

σ√
n

)
= p.

There are three “free” parameters (θ, c, p), so we can solve for one by fixing two.
• If we fix θ = θ0 and c = 2 and solve for p, we obtain the p-value for the

hypothesis θ = θ0 with size 5%.
• If we fix θ = θ0 and p = 0.05 and solve for c, we obtain the critical value for

the hypothesis θ = θ0 with size p.
• If we fix c = 2 and p = 0.05 and solve for θ, we obtain the 95% confidence

interval for θ.
This equation is quite handy when you recall the correct interpretation of the

inferential concepts.

Remark 5.2. In some applications, direct construction of a confidence set can be
harder than hypothesis testing. In such cases, a confidence set may be derived by

4The term “confidence” is likely attributed to Charles Sanders Peirce.
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“inverting” a test, that is, a (1 − α)-confidence set can be formed as the collection of
points at which the point null hypothesis is not rejected when tested with size α.

Remark 5.3. Note that, for statistical inference to be valid asymptotically, we do
not need convergence of moments of θ̂ (Exercise 3.4); all we need is convergence in
distribution to a normal and a consistent estimator of the asymptotic variance.

5.5. Testing Multivariate Hypotheses

Suppose we have two parameters θ = (θ1, θ2) and want to test a hypothesis re-
garding both of θ1 and θ2. There are two important cases to discuss: a hypothesis of
the type θ1 = θ0,1 and θ2 = θ0,2 and a hypothesis of the type θ1 = θ0,1 or θ2 = θ0,2.
The and hypothesis is still a point hypothesis and is the subject of this section; the
or hypothesis is composite and is the subject of multiple testing (Section 5.6). Since
H0 : θ1 = θ0,1 and θ2 = θ0,2 is a point hypothesis, we only need to decide how to
measure the extremeness of a vector θ̂ from another θ0 in order to generalize the
statistical inference seen above.

In a canonical case, an estimator θ̂ of θ converges in distribution to a joint normal
distribution N(θ,Σ/n) for a positive definite matrix Σ, and we also have a consistent
estimator Σ̂ for Σ. Note that the contour lines of the joint normal pdf are given as
nested ellipses (Figure 5.5a). When hypothesis testing is concerned, the extremeness
of θ̂ from θ0 is usually measured by how far the ellipse to which θ̂ belongs is away
from θ0, which is the center of the distribution. The p-value is the volume under the
pdf that is outside the ellipse of θ̂. This can be computed as follows. First, observe
that the normalized vector

√
nΣ−1/2(θ̂ − θ0) preserves the contours5 and follows a

multivariate standard normal distribution. Ergo, what is known as Hotelling’s T 2

statistic, T 2 = ∥
√
nΣ̂−1/2(θ̂ − θ0)∥2, follows a χ2 distribution (Example 2.8). The

p-value for H0 is then given by the tail probability of a χ2 distribution (with the
degree of freedom equal to the number of parameters) above the observed T 2.

A confidence interval can also be derived with this ellipse-based extremeness mea-
sure, in which case it is an ellipse centered at θ̂. However, for ease of interpretation,
a rectangle-based extremeness measure is also popular. Usually, the lengths of the
sides are taken proportional to their marginal standard deviations, and we pick the
rectangle centered at θ̂ whose coverage probability is as desired (Figure 5.5b). An-
other benefit of a rectangular confidence set is that each edge gives a valid marginal
confidence interval, whilst being more conservative than the sharp univariate one.

As a minor note, univariate statistical inference can be viewed as bivariate statis-
tical inference with an extremeness measure taking into account only one coordinate,
e.g., a univariate confidence interval is a bivariate confidence “belt” that is infinitely
long. In Figure 5.5b, the intersection of the confidence belts for the two parameters
is shown as a blue dotted rectangle; note that this intersecting rectangle is narrower

5If two points belong to the same contour of the distribution of θ̂, they belong to the same
contour of the distribution of

√
nΣ−1/2(θ̂ − θ0), and vice versa.
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θ0

θ̂

p-value

(a) Joint hypothesis testing is usually
done with an elliptic p-value (red shaded
area) and an elliptic critical region.

θ̂

(b) Joint confidence sets are usually a
rectangle or an ellipse (red). The in-
tersection of marginal confidence bands
(blue) does not provide correct joint cov-
erage.

Figure 5.5. Joint statistical inference for two parameters.

than the joint confidence rectangle, and hence fails to provide the intended coverage.
The same observation also appeared in Figure 4.3.

Exercise 5.6. Find Σ such that the elliptic confidence set will be a strict subset of
the rectangle confidence set at the same confidence level.

5.6. The Simultaneous Inference Problem and Multiple Testing

Statistical discovery is made on the basis of the rarity of our observation; if some-
thing extremely rare is observed, we take it as a counter-evidence to the postulated
hypothesis and reject it in favor of the alternative hypothesis. Since the p-value dis-
tributes as U [0, 1] under the null (Exercise 5.4), a very small p-value must have come
out with probability as low as the p-value itself had the hypothesis been true.6 How-
ever, if we distort the distribution of the p-value and increase the chance of getting a
small value, the rejection of the hypothesis does not constitute a legitimate discovery.

This can happen when we test many hypotheses and cherry-pick the ones to
report. Suppose for simplicity that we test a correct null hypothesis many times
independently. If we test twice, the probability that the minimum of the two p-values
is less than 5% is 9.75%.7 If we test thrice, it amounts to 14.26%, much less rare
than 5%. Thus, even if the null hypothesis is correct, we can fabricate a rejection by
repeating hypothesis testing and hiding the accepted ones; however, the rarity upon
which the statistical discovery is based is lost. This is known as the simultaneous
inference problem. We will revisit this issue in Section 7.5.

6More generally, the p-value has first-order stochastic dominance over U [0, 1] under the null
[LR05, Lemma 3.3.1].

7A similar calculation as Example 3.5 shows that the cdf of the minimum of k independent
standard uniform variables is F (x) =

∫ x

0 k(1 − x)k−1dx for 0 ≤ x ≤ 1.
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A correct way to account for this problem is to create a huge hypothesis

H0 : θ1 = θ0,1 or θ2 = θ0,2 or θ3 = θ0,3 or . . .

and test it once. However, this turns out to be harder than it looks. A natural
extremeness measure for this hypothesis would be the minimum of how far θ̂j is from
θ0,j, that is, minj |tj| where tj is the t-statistic for θj. If we reject H0 when this
minimum is sufficiently large, it is possible to test this hypothesis controlling the size
at a desired level. However, there are at least two problems in this approach. First,
if one of the equalities is violated (so one t-statistic follows an uncentered normal),
the distribution of the minimum changes only so slightly, and we cannot expect the
power of this test to be very high; this is especially pronounced when there are
many parameters being examined. The alternative hypothesis for which this test has
power is when a substantial portion of the equalities are violated. Second, in many
applications, the joint distribution of θ̂ is not known, so we need to rely on some
generic method that is more conservative than necessary. This worsens the problem
of low power.

To cope with this issue, the notion of statistical discovery is loosened. The prob-
ability of rejection when even just one equality is violated is called the familywise
error rate (FWER). On the other hand, a weaker notion called the false discovery
rate (FDR) is proposed and used. It aims to control the expected proportion of re-
jections, instead of the probability of one or more rejections. The key quantity used
for this is called the q-value in analogy with the p-value. For more details on mul-
tiple testing, see [LR05, Chapter 9]. For a concrete use case of multiple testing in
economics, see, for example, [BDG+15].

5.A. Finite-Sample Testing with Normality

The key to obtaining a normal-location-based inference was the convergence of
our estimator to a normal distribution. This may provoke speculation that the same
inferential procedure applies as long as our estimator is normal. For example, when
each of Xi follows a normal distribution, the sample average X̄n is exactly normal for
every n, regardless of how small n is. However, such idea is not entirely justifiable
for when the sample size is small, the randomness arising from σ̂2 cannot be ignored.

For Xi ∼ i.i.d. N(µ, σ2) and σ̂2 = 1
n−1

∑n
i=1(Xi−X̄n)2, the exact distribution of the

t-statistic t = X̄n−µ
σ̂/

√
n

is known as the t-distribution with n− 1 degrees of freedom. This
distribution of course converges to the standard normal distribution as the sample
size grows, but the smaller the sample size, the wider the distribution, and hence the
more conservative the inference need to be relative to the normal location model.

Similarly, when Xi is a k × 1 i.i.d. random vector that follows N(µ,Σ) and Σ̂ =
1

n−1
∑n

i=1(Xi − X̄n)(Xi − X̄n)′, the exact distribution of Hotelling’s T 2 statistic T 2 =
(X̄n − µ)′( 1

n
Σ̂)−1(X̄n − µ) is known as Hotelling’s T 2 distribution with parameters k

and n − 1. This distribution is none other than a rescaled F -distribution; n−k
(n−1)kT

2

follows the F -distribution with k and n−k degrees of freedom. Again, this converges
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Figure 5.6. Average math test scores for men and women are not
different in the group that was told that the test produces no difference;
average score for women is significantly lower in the group that was told
that the test produces gender differences. [SSQ99, Fig. 2].

to a χ2 distribution with k degrees of freedom as n → ∞ but the smaller the sample
size, the more conservative the inference should be.

In social science, such a small sample situation arises, e.g., when the experiment is
small in psychology or when each observation is at a state level in economics. At any
rate, it cannot be stressed more that these distributions are valid only when each Xi

follows an i.i.d. normal distribution.8 If you are not comfortable with the normality
assumption and still have a small sample size, then replacing the critical value of a
normal distribution (or of a χ2 distribution) by that of a t-distribution (or of a T 2-
distribution) does not justify your inference procedure. In that case, you may have
to make some nonnormal distributional assumption, or you may need to adopt some
correction methods such as the Edgeworth expansion or the Berry–Esseen theorem
(Proposition 3.6).

Example 5.1 (Stereotype threat). In social psychology, stereotype threat refers to
a situation in which an individual faces judgment based on the stereotypes of the
group to which they belong. [SSQ99] examine the stereotype threat that female col-
lege students face when they perform math. The authors selected 30 women and 24
men at the University of Michigan to take a math test. The subjects were randomly
divided into two groups: (1) the first group was told before the exam that the test
had been shown to produce gender differences and (2) the second group was told that
the test had been shown to produce no gender difference. If stereotype threat exists,
female students in group 1 would perform worse than in group 2. The test score Xi

of an individual i is assumed to follow N(µ+ γ1{i is female} + δ1{i is in group 1} +
8For more detailed relationship of the t-statistic and the t-distribution, see [YFK07].
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θ1{i is female and in group 1}, σ2). The parameter θ is of interest and can be esti-
mated by the difference of the average scores of female students in groups 1 and 2
while σ2 by the sample variance of all students. Then, the t-statistic θ̂−θ

σ̂/
√

n
follows a

t-distribution with n− 4 degrees of freedom (this is a special case of Proposition 7.9).
The authors then test a hypothesis H0 : θ = 0 and find that θ̂ is significantly negative
with a p-value of 0.0462.9 In fact, women’s average math score was as high as men’s
in group 2 (γ ≈ 0) and men’s average score was not very different in two groups
(δ ≈ 0), whereas women’s score in group 1 was significantly lower (Figure 5.6). The
authors conclude that “these findings provide strong evidence that women’s under-
performance on these difficult math tests results from stereotype threat, rather than
from sex-linked ability differences that are detectable only on advanced math mate-
rial.” The paper sparked massive literature on stereotype threat, which now provides
mixed conclusions; for a recent meta-analysis, see [FW15].

9They compare t2 to an F -distribution instead of t to a t-distribution, but these are equivalent
when a point hypothesis is concerned.



CHAPTER 6

Maximum Likelihood Estimation

All models are wrong, but
some are useful.

George E. P. Box, 1978

6.1. The Principle of Maximum Likelihood

The principle of maximum likelihood is the principle of ordinariness. Suppose
we throw a coin 100 times and get 82 heads. There are two ways to interpret this
outcome. First, we can think that we are extremely lucky, since getting at least 82
heads in 100 coin tosses can happen only about twice in a billion trials. Or instead,
we can choose to think that the coin we’re tossing may be heavily biased, since then
what just happened to us is anything but surprising. In particular, if the probability
of the coin landing on heads is 82%, the given outcome becomes the most ordinary.
This latter interpretation is the philosophy behind maximum likelihood estimation
(MLE).

But why does that work? Why is regarding ourselves as ordinary better than
regarding ourselves as special? To see this, it is important to distinguish the ordi-
nariness of one observation from that of the whole sample. Note that each individual
observation can be as ordinary or as rare as it can be. However, if rare events hap-
pen as rarely as they are and ordinary events happen as ordinarily as they are, then
that whole dataset—collectively—is merely ordinary. In other words, if 10% of the
outcomes are as rare as 10%, 20% of them as rare as 20%, 30% as 30%, and so on,
then that is the most “ordinary” outcome we can expect as one big chunk of obser-
vations, which is exactly what Proposition 4.2 predicts to happen eventually, that
the frequency counts converge to the true probability distribution as the sample size
increases. Therefore, seeing the entire dataset as the most collectively ordinary out-
come makes more and more sense as we include more and more data points. Ergo,
we are exploiting the fundamental characteristics of the probability that, in the long
run, only the most ordinary event can take place.

Thus, in MLE, we seek the value of the parameter that renders the whole observa-
tions the least surprising. This is a generic principle that can be applied widely from
parametric to nonparametric models, but its mathematics is the easiest to illustrate
for parametric models, which we focus on here. In economics and business research, a
parametric model of an economic agent’s decision may be implied by economic theory,
and the parameters thereof may be estimated by MLE.

61
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We inherit the i.i.d. setup from Section 4.3. In particular, let {Pθ : θ ∈ Θ ⊂ Rk} be
a parametric model with the density pθ on a common support, the score ℓ̇θ continuous
in both θ and x, and the invertible Fisher information matrix Iθ. The likelihood of
the sample is given by ∏n

i=1 pθ(Xi). Maximizing it is equivalent to maximizing its
logarithm, ℓn,θ(X) = ∑n

i=1 ℓθ(Xi). Thus, the maximum likelihood estimator (MLE)
solves1

θ̂ = arg max
θ∈Θ

n∑
i=1

ℓθ(Xi).

This method is mathematically justified by the following property.

Theorem 6.1 (Identification). If θ ̸= θ0 implies pθ ̸= pθ0, then Eθ0 [ℓθ(Xi)] is uniquely
maximized at θ = θ0.

Proof. A slightly stronger claim is proved in [vdV98, Lemma 5.35]. ■

MLE is an example of M -estimation (Example 4.3). However, since the log likeli-
hood is assumed to be differentiable here, it can be reduced to a Z-estimation problem
(Example 4.2)

ℓ̇n,θ̂(X) =
n∑

i=1
ℓ̇θ̂(Xi) = 0,

which is justified in light of Eθ0 [ℓ̇θ0(Xi)] = 0 (Theorem 4.6).

6.2. As the Construction Method for Efficient Estimators

MLE is strongly motivated in relation to the Cramér–Rao bound. Recall that the
crucial step in Theorem 4.7 is the following Cauchy–Schwarz inequality (simplified
for a univariate case)

Cov(θ̂, ℓ̇n,θ)2 ≤ Var(θ̂) Var(ℓ̇n,θ) ⇐⇒ | Corr(θ̂, ℓ̇n,θ)| ≤ 1.
Ergo, the attainability of efficiency hinges on the attainability of this as an equality.
In other words, θ̂ is efficient if and only if θ̂ and ℓ̇θ are linearly dependent, that is,
ℓ̇n,θ(X) = aθ(θ̂(X) − bθ) for some aθ and bθ. If θ̂ is unbiased, then bθ must be θ for
the score to have mean zero, hence ℓ̇n,θ(X) = aθ(θ̂(X) − θ).

Note that if we substitute θ by θ̂, we get ℓ̇n,θ̂ = aθ̂(θ̂ − θ̂) = 0, which coincides
with the Z-estimation formulation of MLE. This implies that the efficient estimator
of a smooth parametric model is none other than the MLE itself. However, the con-
verse does not hold—there are cases where the MLE exists but no efficient estimator
does. This is because the MLE is neither necessarily unbiased nor necessarily linearly
dependent on the score. For that matter, the MLE can exist even when the MVU
estimator does not.

The bottom line is that, if we want an efficient estimator, try MLE and check if
it is unbiased and its variance attains the bound. If so, bingo. But even if not, we
then know that there does not exist an efficient estimator.

1The acronym “MLE” stands for both “maximum likelihood estimation” and “maximum likeli-
hood estimator,” depending on the context.
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θ0 θ

Eθ0 [ℓθ(Xi)]

(a) Likelihood that has an
isolated maximum.

θ0 θ

Eθ0 [ℓθ(Xi)]

(b) Likelihood that has a
plateaued maximum.

θ0 θ

Eθ0 [ℓθ(Xi)]

(c) Likelihood that asymp-
totes to its maximum.

Figure 6.1. The identification condition in Theorem 6.2 requires that
sup∥θ−θ0∥≥ε Eθ0 [ℓθ(Xi)] < Eθ0 [ℓθ0(Xi)] for every ε > 0. It is satisfied in
(a) but not in (b) or (c).

Example 6.1 (Normal). Suppose Xi ∼ N(µ, σ2) where µ is known. Then

ℓ̇n,σ2(X) = − n

2σ2 +
∑n

i=1(Xi − µ)2

2σ4 = n

2σ4

[
1
n

n∑
i=1

(Xi − µ)2 − σ2
]
.

Therefore, σ̂2 = 1
n

∑n
i=1(Xi − µ)2 attains the Cramér–Rao bound.2 If µ is not known,

the MLE for σ2 is equal to the plug-in, σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2, which neither is

unbiased nor attains the Cramér–Rao bound. However, a MLE exists in either case.

Example 6.2 (Cauchy). SupposeXi follows the Cauchy distribution with pdf pθ(x) =
π−1[1 + (x− θ)2]−1. Then, the MLE for θ exists and is unbiased but does not attain
the Cramér–Rao bound.

Example 6.1 provokes a thought that, since µ is consistently estimable, σ̂2 “ap-
proaches” an efficient estimator as we have more and more samples. This intuition
is correct—the MLE of a smooth parametric model is asymptotically efficient, be it
efficient in finite samples or not. The bottom line is, the converse does hold asymp-
totically for smooth parametric models.

6.3. Asymptotic Efficiency and Inference

The Cramér–Rao bound is a finite-sample result and is not attainable in many ex-
amples. However, the intuition of the Cramér–Rao bound goes beyond finite samples.
In fact, even when MLE is not efficient in finite samples, it is asymptotically efficient
(Definition 4.7) for all smooth models. This section presents the formal results for
this.

First, MLE is consistent when it is identified and satisfies some regularity condi-
tions. The identification condition requires that the function have an isolated maxi-
mum (Figure 6.1). The second condition states that the sample log likelihood must
converge to the population log likelihood uniformly over the parameter space.

Theorem 6.2 (Consistency of MLE). Let θ0 ∈ Θ be the true parameter. Suppose
that sup∥θ−θ0∥≥ε Eθ0 [ℓθ(Xi)] < Eθ0 [ℓθ0(Xi)] for every ε > 0 and supθ∈Θ | 1

n

∑n
i=1 ℓθ(Xi)−

2Note that since µ is known, σ̂2 is unbiased without any correction (Example 4.4).
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Eθ0 [ℓθ(Xi)]| →p 0. Then, the maximum likelihood estimator θ̂ converges in probability
to θ0.

Proof. It follows from [vdV98, Theorem 5.7]. The argument is as follows.

Eθ0 [ℓθ0(Xi)] − Eθ0 [ℓθ̂(Xi)] = Eθ0 [ℓθ0(Xi)] − 1
n

∑
ℓθ0(Xi) + 1

n

∑
ℓθ0(Xi) − Eθ0 [ℓθ̂(Xi)]

≤ Eθ0 [ℓθ0(Xi)] − 1
n

∑
ℓθ0(Xi) + 1

n

∑
ℓθ̂(Xi) − Eθ0 [ℓθ̂(Xi)]

≤ 2 sup
θ∈Θ

∣∣∣ 1
n

∑
ℓθ(Xi) − Eθ0 [ℓθ(Xi)]

∣∣∣ p−→ 0,

where the first inequality uses the maximizing property of θ̂ and the last convergence
uses the second assumption. By the first assumption, it follows that θ̂ →p θ0. ■

The following result shows that MLE is asymptotically efficient, so its variance
converges to the inverse of the Fisher information matrix.

Theorem 6.3 (Parametric efficiency of MLE). Suppose θ0 is in the interior of Θ
and there exists a measurable function m such that Eθ0 [m(Xi)2] < ∞ and for every
θ1 and θ2 in a neighborhood of θ0,

|ℓθ1(x) − ℓθ2(x)| ≤ m(x)∥θ1 − θ2∥.

Suppose also that Pθ is smooth as described in Section 4.3 and ℓn,θ is twice differen-
tiable with the second derivative continuous in both θ and x. If θ̂ is consistent,

√
n(θ̂ − θ0) = I−1

θ0

1√
n

n∑
i=1

ℓ̇θ0(Xi) + oP (1)⇝ N(0, I−1
θ0 ).

Proof. I give a sketch. A rigorous proof is found in [vdV98, Theorem 5.39]. By
Taylor’s theorem,3

0 = 1√
n

∑
ℓ̇θ̂(Xi) = 1√

n

∑
ℓ̇θ0(Xi) + 1√

n

∑
ℓ̈θ0(Xi)(θ̂ − θ0) + oP (1).

This rearranges as
√
n(θ̂ − θ0) = −

( 1
n

∑
ℓ̈θ0

)−1 1√
n

∑
ℓ̇θ0(Xi) + oP (1).

Observe that 1
n

∑
ℓ̈θ0 →p −Iθ0 by Theorem 4.6 and 1√

n

∑
ℓ̇θ0 ⇝ N(0, Iθ0) by the CLT.

Then the result follows by Slutsky’s lemma. ■

The “practical” version of the statement is θ̂ ⇝ N(θ, 1
n
I−1

θ0 ). When MLE is ef-
ficient in finite samples, its mean is θ and variance is I−1

n,θ0 = 1
n
I−1

θ0 (Definition 4.4).
Theorem 6.3 then adds that the shape of the distribution approaches normal. More-
over, even when MLE is not efficient (so no efficient estimator exists), the mean and
variance of MLE converge to a hypothetical normally distributed efficient estimator.

3The hard part is to show that the remainder is indeed oP (1).
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Remark 6.1. The assumption of everywhere twice continuous differentiability of the
likelihood can be relaxed to accommodate some kinky and jumpy distributions, which
may appear in censored models, auctions, or corporate finance [vdV98, Section 5.5].
Example 6.3 (Exponential distribution). Let X = (X1, . . . , Xn) be i.i.d. observa-
tions from an exponential distribution with pdf pλ(x) = λe−λx

1{x > 0}. Then we
have ℓ̇λ(x) = λ−1 − x and ℓ̈λ(x) = −λ−2, so Iλ = λ−2. Since the log likelihood
of the sample is ℓn,λ(X) = n log λ − λ

∑n
i=1 Xi, the maximum likelihood estimator

is λ̂ = X̄−1
n . Now, it is easy to see that this estimator is not unbiased, much less

efficient. However, by Theorem 6.3 we know that it is asymptotically efficient, i.e.,√
n(λ̂− λ)⇝ N(0, λ2).

Exercise 6.1 (Logistic location model). Let X = (X1, . . . , Xn) be i.i.d. observations
from a logistic distribution with pdf pµ(x) = e−(x−µ)/s

s(1+e−(x−µ)/s)2 , where we assume s > 0 is
known. Find the asymptotic distribution of MLE for µ.
Exercise 6.2 (Superconsistency). The counterexample to the Cramér–Rao bound
(Example 4.12) also works as a counterexample for MLE. We have i.i.d. Xi ∼ U [0, θ],
so θ̂ = X(n). Show that θ̂ converges faster than

√
n.

Exercise 6.3 (Boundary). Let X = (X1, . . . , Xn) be i.i.d. N(µ, 1) with µ ≥ 0. Show
that the maximum likelihood estimator is µ̂ = X̄n ∨ 0 and that

√
n(µ̂− µ0) does not

converge to N(0, I−1
µ0 ) when µ0 = 0. Which assumption in Theorem 6.3 does this

violate?
Exercise 6.4 (Incidental parameter problem). MLE may not work when there is
a growing number of parameters, a situation that arises quite often in panel data
models. For illustration, consider Xi =

[
Xi1
Xi2

]
∼ N([ µi

µi ], σ2[ 1 0
0 1 ]), where the parameter

µi defines the means of Xi1 and Xi2 but is not related to any other observation; such
parameters that only concern a finite number of observations despite the growing n
are called incidental. Derive MLEs for µi and σ2 and verify that they are not even
consistent. Which assumption in Theorem 6.2 does this violate?

To carry out inference with a maximum likelihood estimator, we need its asymp-
totic variance, which is the inverse Fisher information matrix. For a normal location
model with known variance, we can analytically calculate that I−1

µ = Σ. When the
Fisher information depends on unknown quantities, we will need to estimate it in
some way. In Example 6.3, the asymptotic variance is given as λ2, which depends on
unknown λ. Since λ̂ is consistent, the plug-in estimator λ̂2 converges in probability to
λ2 by the continuous mapping theorem. In general, a more simplistic plug-in method
works just fine.
Theorem 6.4 (Fisher information estimation). Suppose there exists a measurable
function m such that Eθ0 [m(Xi)] < ∞ and for every θ1 and θ2 in a neighborhood of
θ0,

∥ℓ̇θ1(x)ℓ̇θ1(x)′ − ℓ̇θ2(x)ℓ̇θ2(x)′∥ ≤ m(x)∥θ1 − θ2∥.
If θ̂ is consistent, then we have 1

n

∑n
i=1 ℓ̇θ̂(Xi)ℓ̇θ̂(Xi)′ →p Iθ0.
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Proof. As in [vdV98, Example 19.7], the L1-bracketing number of (each com-
ponent of) {ℓ̇θℓ̇

′
θ : ∥θ − θ0∥ < ε} is finite for sufficiently small ε > 0. Since

Eθ0 [m(Xi)] < ∞, this class of functions is Pθ0-Glivenko–Cantelli by [vdV98, Theorem
19.4]. Then the claim follows by the consistency of θ̂. ■

Example 6.4 (Huff model). Large stores tend to be located farther away from res-
idential areas, and small stores closer. The Huff model describes how consumers
choose which store to go to. Suppose that there are S stores in a neighborhood of in-
terest. The Huff model postulates that, building on some axioms, consumer i chooses
to shop at store s with probability

z(s)/d(s)λ∑S
s̃=1 z(s̃)/d(s̃)λ

,

where z(s) is the size of store s, d(s) the distance to store s, and λ the parameter
that measures the consumer’s preference for distance over store size. If λ = 0, the
consumer chooses solely on the basis of the size of the store; if λ = ∞, they always
go to the closest store. We can also interpret λ as an effective geographic market
size; the larger λ is, the smaller is the geographic market region. If λ is finite, they
visit each store with positive probability, so the smoothness condition in Section 4.3
including the common support is met.4

Consider surveying consumers in a given neighborhood (so that d(s) is the same
across all consumers), and label the stores they visited by X1, . . . , Xn. Then, the log
likelihood for each shopping trip Xi is given by

ℓλ(Xi) = log z(Xi)/d(Xi)λ∑S
s=1 z(s)/d(s)λ

.

The score and Hessian are

ℓ̇λ(Xi) = − log d(Xi) +
∑S

s=1 z(s)d(s)−λ log d(s)∑S
s=1 z(s)d(s)−λ

,

ℓ̈λ(Xi) = −
∑S

s=1 z(s)d(s)−λ(log d(s))2∑S
s=1 z(s)d(s)−λ

+
[∑S

s=1 z(s)d(s)−λ log d(s)∑S
s=1 z(s)d(s)−λ

]2

.

Since the Hessian does not depend on the data, we obtain the Fisher information as
Iλ = −ℓ̈λ in light of Theorem 4.6, which can then be estimated by Iλ̂. In practice, the
value of λ may vary depending on the purpose of shopping, e.g., for regular shopping
and for fill-in shopping, as well as on the neighborhood; [HSA72] estimate the model
separately for the purpose of shopping and neighborhood and find that there is not
much variation of λ across different neighborhoods of middle class while there is a
significant variation of λ across different purposes of shopping: the major stores, the
second stores, and the fill-in stores (Table 6.1).
Remark 6.2. Sometimes, we have a part of observations that does not depend on θ.
Suppose that an observation consists of a pair (X, Y ) and their joint distribution is
given by pX,Y ;θ(x, y) = pX(x)pθ(y | x). This is to say that the parameter θ affects

4If it helps, you can think that z and s are continuous functions on R.
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Table 6.1. Preference for distance in the Huff model [HSA72, p. 157]

Neighborhood
Model Cities 3rd Ward 19th Ward Maplewood

Stores λ̂ [80% CI] λ̂ [80% CI] λ̂ [80% CI] λ̂ [80% CI]

Major 1.06 0.72 1.39 0.17 0.02 0.36 0.93 0.46 1.41 0.49 0.00 0.97
Second 1.10 0.24 4.30 1.17 0.54 1.82 0.64 0.00 1.27 0.58 0.27 1.20
Fill-in 1.71 1.25 2.21 1.75 1.29 2.23 1.61 1.04 2.25 0.15 0.01 1.00

the conditional distribution of Y given X but not the marginal distribution of X.
Such X is called the covariates. In this case, the log likelihood can be split into the
marginal log likelihood of X and the conditional log likelihood of Y given X, i.e.,
ℓθ(x, y) = log pX(x) + log pθ(y | x). Note that the first term is independent of θ and
hence does not influence the maximization. This means that MLE can be carried
out without specifying the marginal distribution of X. Moreover, since the derivative
of log pX(x) with respect to θ is zero, we can ignore the marginal of X in the score
and Fisher information calculation as well. This is an obvious extension of MLE to
a particular type of semiparametric models that have covariates. An example of this
is the logistic regression (Chapter 8).

6.4. Misspecification and Quasi-Maximum Likelihood

What if our guess about the parametric model is incorrect? Let X = (X1, . . . , Xn)
be an i.i.d. sample from a probability distribution P0 such that P0 ̸= Pθ for every
θ ∈ Θ. In social science, it is reasonable to expect that no model is fully correct to
its fine details, so this view matches many researchers’ perception. In this case, MLE
is specifically called quasi-maximum likelihood estimation (QMLE) and estimates a
pseudo-parameter that maximizes the misspecified log likelihood, i.e.,

θ0 = arg max
θ∈Θ

EP0 [ℓθ(Xi)],

which equivalently minimizes the Kullback–Leibler divergence from Pθ0 to P0. If the
model is sufficiently smooth and identified, we expect that the score still satisfies the
moment equality

EP0 [ℓ̇θ0(Xi)] = 0
as the first-order condition for the maximization, but now under P0 instead of Pθ0 .
Meanwhile, the variance of the score EP0 [ℓ̇θ0(Xi)ℓ̇θ0(Xi)′] is different from either the
Fisher information Iθ0 or the expected second derivative −EP0 [ℓ̈θ0(Xi)] since the proof
of Theorem 4.6 does not go through with EP0 [p̈θ/pθ] ̸=

∫
p̈θ.

The consequence of this is that, while the maximum likelihood estimator can still
be consistent (to the pseudo-parameter thusly defined) and asymptotically normal,
its asymptotic variance will no longer be equal to the inverse variance of the score.

Below are the conditions for consistency and asymptotic normality of QMLE.
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Theorem 6.5 (Consistency of QMLE). Let θ0 ∈ Θ be the pseudo-parameter that
maximizes EP0 [ℓθ(Xi)]. Suppose that sup∥θ−θ0∥≥ε EP0 [ℓθ(Xi)] < EP0 [ℓθ0(Xi)] for every
ε > 0 and supθ∈Θ | 1

n

∑n
i=1 ℓθ(Xi) − EP0 [ℓθ(Xi)]| →p 0. Then, the quasi-maximum

likelihood estimator θ̂ converges in probability to θ0.

Proof. It follows from [vdV98, Theorem 5.7]. ■

Theorem 6.6 (Asymptotic distribution of QMLE). Suppose θ0 is in the interior of
Θ and there exists a measurable function m such that EP0 [m(Xi)2] < ∞ and for every
θ1 and θ2 in a neighborhood of θ0,

∥ℓθ1 − ℓθ2(x)∥ ≤ m(x)∥θ1 − θ2∥.

Suppose also that Pθ is smooth as described in Section 4.3 and EP0 [ℓ̈θ0(Xi)] is invert-
ible. If θ̂ is consistent, then

√
n(θ̂ − θ0) = −EP0 [ℓ̈θ0(Xi)]−1 1√

n

n∑
i=1

ℓ̇θ0(Xi) + oP (1)

⇝ N
(
0, EP0 [ℓ̈θ0(Xi)]−1EP0 [ℓ̇θ0(Xi)ℓ̇θ0(Xi)′]EP0 [ℓ̈θ0(Xi)]−1

)
.

Proof. It follows from [vdV98, Theorem 5.23]. ■

Note that this asymptotic variance reduces to I−1
θ0 if the model is correctly specified

and the likelihood is twice differentiable. Therefore, when conducting inference with
MLE, it is advisable to always use an estimator of this variance formula instead of
the simplified inverse Fisher information, since then the statistical inference is valid
regardless of the presence of misspecification. The following theorem gives one such
estimator.

Theorem 6.7 (Variance estimation for QMLE). Suppose that there exist measurable
functions m1 and m2 such that EP0 [m1(Xi)] < ∞, EP0 [m2(Xi)] < ∞, and for every
θ1 and θ2 in a neighborhood of θ0,

∥ℓ̇θ1(x)ℓ̇θ1(x)′ − ℓ̇θ2(x)ℓ̇θ2(x)′∥ ≤ m1(x)∥θ1 − θ2∥,
∥ℓ̈θ1(x) − ℓ̈θ2(x)∥ ≤ m2(x)∥θ1 − θ2∥.

If θ̂ is consistent, then we have 1
n

∑n
i=1 ℓ̇θ̂(Xi)ℓ̇θ̂(Xi)′ →p EP0 [ℓ̇θ0(Xi)ℓ̇θ0(Xi)′] and

1
n

∑n
i=1 ℓ̈θ̂(Xi) →p EP0 [ℓ̈θ0(Xi)].

Proof. Essentially the same as Theorem 6.4. ■

There are some cases where the pseudo-parameter withstands our test of inter-
pretability. Suppose we are interested in the mean of Xi and postulate that Xi is
i.i.d. normal. We may be wrong in our choice of normality, but the mean of Xi is
still well defined and can be of interest. In this sense, θ0 = EP0 [Xi] upholds the
interpretation as the “true” parameter. Since the maximum likelihood estimator of
the normal location model is the sample average θ̂ = X̄n, it consistently estimates
the true mean anyway.
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This observation generalizes to more complicated models, specifically to ones
where the conditional mean is of interest and the deviation therefrom is modeled
as normal. A prominent example in economics is limited information maximum like-
lihood (LIML), the details of which are left for more advanced courses.

Exercise 6.5 (Logistic location model). Let X = (X1, . . . , Xn) be as defined in Ex-
ercise 6.1. However, suppose that we use a normal location model with unit variance,
that is, we mistakingly model it as N(µ, 1). Verify that the misspecification-robust
variance in Theorem 6.6 equals the variance of Xi. Also, compute how much efficiency
loss we incur for this misspecification relative to Exercise 6.1.

Exercise 6.6 (Logistic scale model). Let X = (X1, . . . , Xn) be i.i.d. standard logistic
random variables. Suppose that we misspecify the model as a normal scale model,
N(0, σ2) with parameter σ2. Derive the pseudo-parameter σ2

0 to which the QMLE
asymptotes.

Exercise 6.7 (Lognormal). Let X = (X1, . . . , Xn) be an i.i.d. sample of the chi-
square distribution with four degrees of freedom (Example 2.8). However, suppose
we postulate a lognormal model with an unknown location parameter µ and a known
scale parameter σ (Example 2.9). Derive the pseudo-parameter µ to which the QMLE
asymptotes, and derive the asymptotic distribution of the QMLE. You may use the
following fact: If X ∼ χ2(4), E[logX] = 1 + log 2 − γ and Var(logX) = π2

6 − 1 where
γ ≈ 0.577 is Euler’s constant.

6.5. Wald, Likelihood Ratio, and Lagrange Multiplier Tests

Now that we have the maximum likelihood estimator θ̂ that is asymptotically
normal and an estimator of its asymptotic variance that is consistent, we may carry
out statistical inference as we learned in Chapter 5. On top of that, there are two
more ways to carry out inference in the MLE framework that are worthy of discussion.

The simple application of Chapter 5 leads to the Wald test, which measures the
extremeness of our sample relative to the hypothesis by the distance of θ̂ to θ0.
Alternatively, we can measure the extremeness by the difference of the log likelihood
at θ̂ and θ0, leads to what is known as the likelihood ratio test. Moreover, we may
take the slope of the log likelihood at θ0 as the extremeness measure, since the slope
of the population log likelihood must be zero at θ0 if the hypothesis is true; this leads
to the Lagrange multiplier test. These tests are illustrated in Figure 6.2.

Under correct specification, the three tests become asymptotically equivalent.
Nevertheless, it is valuable to understand them all since each one of them can be
generalized to different models other than MLE. In this section, we assume correct
specification for simplicity, but it is straightforward to extend the Wald and Lagrange
multiplier tests to misspecification [Whi82].

The Wald test is based on an estimator θ̂ and relies on the asymptotic normality√
n(θ̂ − θ0)⇝ N(0, I−1

θ0 ) in Theorem 6.3 to construct a valid test.
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θ0 θ̂

ℓn,θ̂

ℓn,θ0 ℓn,θ

ℓ̇n,θ0
LM

LR

Wald

θ

Figure 6.2. Three tests. The Wald test examines if θ̂ is close to the
null θ0. The LR test examines if the log-likelihood at the null is close
to the maximized log-likelihood. The LM test examines if the slope at
the null is close to 0.

Theorem 6.8 (Wald test). Suppose Îθ0 is a consistent estimator for Iθ0. Under the
assumptions of Theorem 6.3, we have

W := n(θ̂ − θ0)′Îθ0(θ̂ − θ0) = n(θ̂ − θ0)′Iθ0(θ̂ − θ0) + oP (1)⇝ χ2(k).

Proof. Write W =
√
n(θ̂− θ0)′Iθ0

√
n(θ̂− θ0) +

√
n(θ̂− θ0)′(Îθ0 − Iθ0)

√
n(θ̂− θ0).

The first term converges to χ2(k) by the CMT (Theorem 3.3) and the second is
OP (1)oP (1)OP (1) = oP (1). ■

The likelihood ratio (LR) test is based on the M -estimation formulation of MLE
and checks if the attained maximum value of the objective function ∑ ℓθ̂(Xi) is close
to the value of the objective function at the null ∑ ℓθ0(Xi). Their difference can
be shown to converge in distribution to a chi-square distribution, whence we can
construct a valid test.

Theorem 6.9 (Likelihood ratio test). Under the assumptions of Theorem 6.3 and
additional smoothness, we have

LR := 2
(

n∑
i=1

ℓθ̂(Xi) −
n∑

i=1
ℓθ0(Xi)

)
= n(θ̂ − θ0)′Iθ0(θ̂ − θ0) + oP (1)⇝ χ2(k).

Proof. As in Theorem 6.3, I only give intuition. A rigorous proof requires mod-
ified versions of [vdV98, Theorem 7.2 and Lemma 19.31].

By Taylor’s theorem,

LR = −2
∑

ℓ̇θ̂(Xi)′(θ0 − θ̂) − [
√
n(θ0 − θ̂)]′ 1

n

∑
ℓ̈θ̂(Xi)[

√
n(θ0 − θ̂)] + oP (1).

The first term is zero since θ̂ solves ∑ ℓ̇θ̂(Xi) = 0. The second term converges to
χ2(k) by the CMT. ■

The Lagrange multiplier (LM) test or the score test is based on the M -estimation
formulation of MLE and uses if the score at the null ∑ ℓ̇θ0(Xi) is close to 0. Since
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this converges in distribution to a normal by the CLT, we can construct a valid test
therefrom.

Theorem 6.10 (Lagrange multiplier test). Suppose Îθ0 is a consistent estimator for
Iθ0. Then, under the assumptions of Theorem 6.3,

LM :=
(

n∑
i=1

ℓ̇θ0(Xi)
)′

(nÎθ0)−1
(

n∑
i=1

ℓ̇θ0(Xi)
)
⇝ χ2(k).

Under the assumptions of Theorem 6.3, we have LM = n(θ̂ − θ0)′Iθ0(θ̂ − θ0) + oP (1).

Proof. Write LM = ( 1√
n

∑
ℓ̇θ0)′I−1

θ0 ( 1√
n

∑
ℓ̇θ0) + ( 1√

n

∑
ℓ̇θ0)′(Î−1

θ0 − I−1
θ0 )( 1√

n

∑
ℓ̇θ0).

The first term converges to χ2(k) by the CLT (Theorem 3.5) and CMT and the second
is oP (1). To obtain the second representation, note that ∑ ℓ̇θ0 = ∑

ℓ̇θ0 − ∑
ℓ̇θ̂ =∑

ℓ̈θ0(Xi)(θ̂ − θ0) + oP (1) as in Theorem 6.3. ■

The name comes from the fact that the test statistic is given as the Lagrange
multiplier of the M -estimation problem constrained by the null hypothesis

max
θ

ℓn,θ(X) subject to θ = θ0.

Although this problem is degenerate in that θ is fully specified by the constraint, the
test generalizes to the case where the hypothesis specifies part of θ or the range of θ.
In general, if the constraint is not binding (that is, the constrained maximum equals
the unconstrained maximum), the Lagrange multiplier is zero.

Asymptotically, the log likelihood approaches a quadratic function whose curva-
ture matches the inverse variance of θ̂, and the three tests become all equivalent.

Corollary 6.11 (Trinity). Let t1 and t2 be any two of the three test statistics W , LR,
and LM. Under the assumptions of their respective validity, we have t1 − t2 →p 0.

In sum, the Wald test examines if the alternative exhibits the property of the
null, so there is no need to evaluate anything for the null; the LM test examines if
the null exhibits the property of the true model, and there is no need to carry out
estimation of θ (if the null hypothesis specifies the entirety of θ); the LR test evaluates
both hypotheses and compares how close they are. The Wald test can be extended
to arbitrary models that yield an estimator and is often the default choice in many
cases. The LM test extends to general Z-estimation problems and is a preferred
choice when estimation is computationally burdensome. The LR test is extendable
to some M -estimation problems such as optimally-weighted GMM [Hay00, Section
7.4] and can be applied to the test of overidentification [Hay00, Section 8.5].

In the context of linear regression, it is known that the following relationship holds
in finite samples [Bre79],

W ≥ LR ≥ LM.

This means that Wald is the least conservative and LM is the most conservative.
Unlike what we see in Section 7.2.4, however, it is not so customary to use—for the
sake of finite-sample conservatism—the LM test when the Wald test is available.





CHAPTER 7

Linear Regression

Of all the principles . . .
there is no more general,
more exact, and more easy of
application [than that] . . .
which consists of rendering
the sum of squares of the
errors a minimum.

Adrien-Marie Legendre,
translated by h. a. ruger

and h. m. walker, 1805

Linear regression plays a fundamental role in quantitative research in social sci-
ence. Historical origins aside, the adjective “linear” should be understood as “linear
in parameters” but not “linear in variables.” A caveat on notation. We have so far
denoted random variables by capital letters (e.g., X) and nonrandom values by small
letters (e.g., x). When we discuss linear regression in econometrics, it is customary to
use small letters for each observation of random variables (e.g., xi) and capital letters
for the vector or matrix of the entire sample (e.g., X = (x1, . . . , xn)′). We hereafter
conform to this convention.

7.1. Introduction

7.1.1. Regression vs. classification. Both regression and classification refer
to statistical methods of explaining a random variable by other random variables.
The variable to be explained is called the dependent variable, outcome variable, or
response variable, and the variables to explain it are called the regressors, explanatory
variables, independent variables, etc. Distinction between regression and classification
lies in the type of the dependent variable. When the dependent variable is numerical
(continuous), we call it regression; when categorical (discrete), classification. This
nomenclature is mostly agreed upon in computer science, while statisticians use “re-
gression” as an umbrella term that encompasses both. For example, the canonical
classification method is sadly called logistic regression (Chapter 8).

7.1.2. Two projections. When predicting y with the knowledge of x, the best
predictor in squared loss is the conditional expectation

E[y | x] = arg min
g

E[(y − g(x))2],

73
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β0 + β1x

E[y | x]

x

y

(a) E[y | x] and the linear projection of
y onto x.

β0 + β1x+ β2x
2

E[y | x]

x

y

(b) E[y | x] and the linear projection of
y onto x and x2.

Figure 7.1. Two projections. The contour map shows the joint pdf
of (x, y). The red line is the conditional expectation of y given x. The
blue line is the linear projection of y onto functions of x.

where g runs through all measurable functions (Theorem 2.11). We can think of this
as the “measure-theoretic” projection of y onto x.

When we restrict the class of predictors to linear functions of x, the best predictor
is the linear projection of y onto x, i.e.,

E[xx′]−1E[xy] = arg min
b

E[(y − x′b)2].

This is the “analytic” projection of y onto x in the Hilbert space L2(P ).
Since the first projection is minimizing over a wider class of functions, its min-

imized loss is smaller than or equal to the second projection’s (Figure 7.1a). On
the other hand, we can augment the vector x by polynomials, (x, x2

1, . . . , x1x2, . . . ),
and approximate any analytic function g by a linear function thereof (Figure 7.1b).1
Therefore, distinction between the two is not as clear-cut as it might first seem. More-
over, when the two coincide—when we get the basis right—nice properties hold both
statistically and interpretationally.

The derivative of the conditional expectation ∂E[y | x]/∂x is called the partial
effect of x on y and measures how much y changes in expectation in response to a
unit change in x, holding other variables constant [Gre18, Chapter 3]. Such ceteris
paribus consideration is key in causal inference, and when the two projections coincide,
β holds the interpretation as the partial effect of x on y; for example, β1 is the partial
effect of x1 holding all other variables constant.

For every b ∈ Rk, we can without loss of generality write
y = x′b+ εb

for εb := y − x′b. The second projection finds the value of b that makes the second
moment of εb smallest. This choice of b and εb is specifically denoted by β and ε, i.e.,

β := E[xx′]−1E[xy], ε := y − x′β.

1We can also choose other bases. For example, trigonometric series span all square-integrable
functions on a bounded domain.
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Being the residual of an orthogonal projection, ε has the nice characterization by

E[xε] = 0,

where 0 is understood as a k × 1 vector of zeros. This means that if x contains a
constant element known as the intercept, we also have E[ε] = 0.

Suppose we have n observations of (yi, xi), each of which satisfies

yi = x′
iβ + εi, E[xiεi] = 0.

We denote this by Y = Xβ + E where

Y
(n×1)

:=


y1
...
yn

 , X
(n×k)

:=


x′

1
...
x′

n

 =


x11 · · · x1k
... . . . ...
xn1 · · · xnk

 , E
(n×1)

:=


ε1
...
εn

 .
Note that each row of X is the transpose of the column vector xi.

7.1.3. Which projection do we have in mind in practice? When prediction
is our concern, the first projection is of interest. Since x is known at the time we
make a prediction about y, we want to exploit the information from x as much as
possible, be it linear or not. So the conditional expectation is what we are after.

When causal inference is our concern, we still want the first projection. Since x
is to be intervened in, we do know x and want to know how much we should adjust
x in order to attain a desired change in y.

Thus, what is practically of interest is in many cases the conditional expectation,
not the linear projection. However, as estimating the conditional expectation is often
hard, many practitioners see the linear projection as a convenient interpretation as an
approximation to the conditional expectation function. In other words, we may not
believe in the strong assumptions that make x′β the conditional expectation of y given
x, but even in their violation, x′β can be interpreted as the best linear approximation
to the conditional expectation. In particular, by the law of iterated expectations
(Theorem 2.9), we can write β = E[xx′]−1E[xE[y | x]]. This tells that β is a linear
projection of the conditional expectation E[y | x] onto x. Such a property—when
strong assumptions hold, we have strong interpretation; when they fail but weak
assumptions hold, we have weak interpretation—is often preferred by economists.
However, this perception should not be taken without reservations. For example,
when we intervene in x, the distribution of x changes, which in turn changes this
projection (but not the measure-theoretic projection). So how should we decide on
the degree of intervention from β? If we intervene in a specific range of x, what does
β say about the causal effect?

Another appeal of the linear projection is its compatibility with asymptotic theory.
We will see in the next section that weak assumptions are enough to yield statements
about the asymptotic properties, while strong assumptions are required for similar
results in finite-sample terms.
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(b) The i.i.d. view of the data.

Figure 7.2. Plausibility of the i.i.d. sampling assumption.

7.1.4. On the sampling assumption. In this chapter, we make the assump-
tion of i.i.d. sampling. While this assumption can be relaxed, it is also practically
important to see how far we can go with this assumption.

Consider investigating the relationship between the education level x measured by
the number of years in school and the productivity level y measured by the logarithm
of the income. We have three observations i = 1, 2, 3. The first two individuals
are college graduates, so x1 = x2 = 16, and the third one is an MBA holder, i.e.,
x3 = 18. There are diverse occupations taken by college graduates, so the possible
range of their income is extensive. Say, the individual i = 1 took a bachelor in math
and works for a hedge fund, and her income level is high but also its variation is
substantial as half of her income is a bonus tied to the performance of their fund (the
red distribution in Figure 7.2a). The individual i = 2 majored literature and works as
a middle school teacher, and her income is relatively lower than i = 1 but with much
lower volatility (the blue distribution). The last individual i = 3 is a consultant, and
her income is high with a little less volatility than i = 1 (the green distribution). In
this view, the distribution of (x, y) is different for each individual, though they are
not correlated. In statistics terminology, the observations are independent but not
identically distributed (i.n.i.d.).

On the other hand, if we don’t have the data on their majors or occupations, we
have no way to distinguish these distributions. From an economist’s point of view,
the data look like Figure 7.2b; the income distribution for x = 16 is dispersed, and
that for x = 18 is higher on average and more concentrated. Indeed, if we regard
that we randomly sample individuals from the pool of all individuals, their (x, y) is
not only independent but “identically distributed” as the aggregate distribution in
Figure 7.2b. Thus, the assumption of i.i.d. sampling can be maintained even when
the distribution of each observation seems to vary much.

With this interpretation, we can draw the projection line for predicting the income
from education (the black line in Figure 7.2b). This line is meaningful in that when
we want to predict a new individual with a college degree but without information of
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her major or occupation (just as in the original dataset), then this line gives our best
prediction for her income; the same thing for a new individual with an MBA.

Note that, while the joint distribution of (yi, xi) can be considered i.i.d. across i,
the conditional distribution of yi given xi cannot be deemed i.i.d. across xi without
losing much generality. It is only sensible to expect that the income distribution
takes a very different shape for high school graduates, college graduates, and graduate
degree holders, beyond the difference in the mean. This distributional variation is
known as heteroskedasticity.

But what if we observe data on their occupations? If so, we can distinguish (part
of) the distributions in Figure 7.2a, which can be incorporated by the means of more
explanatory variables. We can still maintain the i.i.d. sampling assumption as long
as we allow the distribution of the income to now depend on both the education level
and occupation.

Finally, note that the key component in this “reinterpretation” is the fact that the
observations are independent. If the observations exhibit interrelation such as time
series, spatial, or network dependence, it is generally hard or impossible to recover
the i.i.d. sampling interpretation.

Remark 7.1. Microsoft Word thinks that “-skedasticity” should be spelled as “-scedas-
ticity.” In economics, there has been a consensus that it should be spelled with a k
long before Word was created [McC85]. Some say that this is a difference between
American English and British English. It is only ironic that Biometrika uses a c and
Econometrica (mostly) uses a k [DE01, Appendix B].

7.2. Theory of Ordinary Least Squares

The ordinary least squares (OLS) minimizes the sample counterpart of the mean
squared error,

n∑
i=1

(yi − x′
ib)2 = (Y −Xb)′(Y −Xb)

with respect to b ∈ Rk. The FOC gives −2X ′(Y −Xb) = 0, which solves

β̂ = (X ′X)−1(X ′Y ).

We denote by Ê := Y −Xβ̂ the residuals, and by Ŷ := Xβ̂ the fitted values.

Remark 7.2. The unobservable remainder εi is called the error term while the esti-
mated remainder ε̂i is called the residual. For arbitrary x, the value x′β̂ is called the
predicted value of y; it is specifically called the fitted value of y if x is taken from
observed values.

There are broadly two types of assumptions that give different properties, the
unconditional restrictions and conditional restrictions. The unconditional restrictions
are weaker than the conditional, and are enough to give nice asymptotic properties.
The conditional restrictions are strong enough to give nice finite-sample properties.



78 7. LINEAR REGRESSION

7.2.1. Asymptotic properties. In a nutshell, we have only one essential as-
sumption for OLS to work (Assumption 7.1). Moreover, the i.i.d. assumption can be
relaxed, e.g., to accommodate time series dependence.

Assumption 7.1 (Essential assumption). {yi, xi} are i.i.d. with finite second mo-
ments. E[xix

′
i] is invertible and E[ε2

ixix
′
i] exists.

The next assumption is not at all necessary and in fact is too strong for economic
applications, but if imposed, it can simplify the asymptotic variance formula a little
bit. Failure to satisfy Assumption 7.2 is called unconditional heteroskedasticity.

Assumption 7.2 (Unconditional homoskedasticity). E[ε2
ixix

′
i] = E[ε2

i ]E[xix
′
i].

With these assumptions, we can infer consistency and asymptotic normality of
OLS, whose proof is also worth knowing.

Theorem 7.1 (Asymptotic normality). Under Assumption 7.1, β̂ is consistent and
√
n(β̂ − β)⇝ N

(
0, E[xix

′
i]−1E[ε2

ixix
′
i]E[xix

′
i]−1

)
.

Under Assumption 7.2, the asymptotic variance formula reduces to E[ε2
i ]E[xix

′
i]−1.

Proof. Since E[xx′] is invertible, X ′X is invertible with probability approaching
1. Using β̂ = (X ′X)−1[X ′(Xβ + E)] = β + (X ′X)−1(X ′E), we can write

√
n(β̂ − β) = ( 1

n
X ′X)−1 1√

n
X ′E .

By the LLN (Theorem 3.4) and the CMT (Theorem 3.3), ( 1
n
X ′X)−1 →p E[xx′]−1. By

the CLT (Theorem 3.5), 1√
n
X ′E ⇝ N(0,E[ε2xx′]). Then asymptotic normality (and

consistency) follows by Slutsky’s lemma (Theorem 3.2). The last claim is trivial. ■
Moreover, OLS can even be the best possible estimator for estimating the popu-

lation linear projection line.

Proposition 7.2 (Semiparametric efficiency). Under Assumption 7.1, β̂ is semipara-
metrically efficient.

Proof. Apply a similar argument as [vdV98, Example 25.28]. ■

Remark 7.3. Beware that the notion of semiparametric efficiency depends on the
scope of probability distributions we deem possible. Therefore, if we add conditions
such as Assumption 7.3, Proposition 7.2 may no longer hold.2 See Section 7.3.

7.2.2. Finite-sample properties. Similar results in finite-sample (nonasymp-
totic) terms can be derived with stronger assumptions. As the regression analysis
started with small-sample analysis, there is rich theory on finite-sample properties,
and it is no surprise that many textbooks start with and devote a fair amount of space
to the derivation of finite-sample results. They are of less interest to economists, how-
ever, who enjoy large samples and dislike strong assumptions.

2By the way, adding Assumption 7.2 does not impair the validity of Proposition 7.2.
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Assumption 7.3 (Conditional linearity). E[yi | X] = x′
iβ, or equivalently, E[εi |

X] = 0. X ′X is invertible.
Assumption 7.3 requires that the two projections coincide. This assumption not

only yields finite-sample properties but also admits improvement of the asymptotic
efficiency bound (Section 7.3). Note that yi = x′

iβ+εi is always well defined as a linear
projection, so there was no need to assume “unconditional linearity” in Section 7.2.1.
That is, there was no counterpart of Assumption 7.3 for Theorem 7.1 (except that
invertibility of E[xix

′
i] is a counterpart of invertibility of X ′X).

Assumption 7.4 (Conditional homoskedasticity). E[ε2
i | X] = σ2 for some constant

σ2 and E[εiεj | X] = 0 for i ̸= j.
Failure to satisfy Assumption 7.4 is called conditional heteroskedasticity. Assump-

tions 7.3 and 7.4 follow from the following stronger condition.
Assumption 7.5 (Conditional normality). E | X ∼ N(0, σ2I) for some scalar σ2

and an n× n identity matrix I.
Exercise 7.1. Show that Assumption 7.4 implies Assumption 7.2 and that Assump-
tion 7.5 implies Assumptions 7.3 and 7.4.
Example 7.1 (Unconditionally homoskedastic but not conditionally so). Let x and
z be independent Rademacher random variables, that is, 1 with probability 1/2 and
−1 with probability 1/2. Let ε = z1{x = 1}. Then E[ε | x] = 0. Since x2 ≡ 1, we
have E[ε2x2] = E[ε2]E[x2]. However, E[ε2 | x] = 1{x = 1} depends on x.
Remark 7.4. E[ε2

i | X] = σ2 for some constant σ2 implies σ2 = E[ε2
i ], but E[ε2

ixix
′
i] =

σ2E[xix
′
i] for some constant σ2 does not imply σ2 = E[ε2

i ].
Remark 7.5. Under Assumption 7.3, E[ε2

i | X] = Var(εi | X), so E[ε2
i | X] = constant

if and only if Var(εi | X) = constant.
The following result is a finite-sample counterpart of Theorem 7.1. Under stronger

assumptions, OLS is unbiased and normally distributed in finite samples.
Proposition 7.3 (Finite-sample unbiasedness and normality). Under Assumption
7.3, E[β̂ | X] = β. Under Assumptions 7.3 and 7.4, Var(β̂ | X) = σ2(X ′X)−1 and
Cov(β̂, Ê | X) = 0. Under Assumption 7.5, β̂ | X ∼ N(β, σ2(X ′X)−1).

Proof. Unbiasedness follows from E[β̂ | X] − β = (X ′X)−1X ′E[E | X] = 0.
Next, Var(β̂ | X) = E[(β̂ − β)(β̂ − β)′ | X] = (X ′X)−1X ′E[EE ′ | X]X(X ′X)−1 =
σ2(X ′X)−1. For the third claim, note that Y − Xβ̂ = [I − X(X ′X)−1X ′]Y = [I −
X(X ′X)−1X ′]E where I stands for an identity matrix of a conformable size. Then,
Cov(β̂, Ê | X) = E[(β̂ − β)(Y − Xβ̂)′ | X] = E[(X ′X)−1X ′EE ′[I − X(X ′X)−1X ′] |
X] = σ2E[(X ′X)−1X ′[I − X(X ′X)−1X ′] | X] = 0. The last claim is trivial given
β̂ = β + (X ′X)−1X ′E . ■

Under these strong assumptions, optimality of OLS also extends to finite samples.
The following is a finite-sample counterpart of Proposition 7.2.
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Proposition 7.4 (Gauss–Markov). Under Assumptions 7.3 and 7.4, β̂ is the best
linear unbiased estimator (BLUE), that is, Var(β̂ | X) ≤ Var(β̃ | X) for every
unbiased estimator β̃ that is linear in Y .

Proof. Let β̃ = C(X)Y and define D = C(X) − (X ′X)−1X ′. Write β̃ = β̂ +
DY = β̂ + DXβ + DE . Since E[DE | X] = 0 and β̃ is unbiased, we have DX = 0.
Therefore, β̃ = β̂ + DE , and hence Var(β̃ | X) = Var(β̂ | X) + Cov(β̂, DE | X) +
Cov(DE , β̂ | X) + Var(DE | X). Now, Cov(DE , β̂ | X) = E[DEE ′X(X ′X)−1 |
X] = E[ε2

i ]DX(X ′X)−1 = 0 since DX = 0. Then, the result follows since Var(β̂ |
X) − Var(β̃ | X) = Var(DE | X) is positive semidefinite. ■

Exercise 7.2. Show that Var(β̂) ≤ Var(β̃) under Proposition 7.4. Hint: Use Theo-
rem 2.13.

Remark 7.6. The OLS estimator can be viewed as a (conditional) MLE under As-
sumptions 7.1 and 7.5. The simplified variance formula E[ε2

i ]E[xix
′
i]−1 in Theorem 7.1

corresponds to the correctly specified variance formula in Theorem 6.3, and the het-
eroskedasticity-robust variance E[xix

′
i]−1E[ε2

ixix
′
i]E[xix

′
i]−1 to the misspecification-ro-

bust variance in Theorem 6.6. This correspondence is useful, e.g., when we interpret
regularization as a Bayesian inference.

Remark 7.7. [Han22] shows that the requirement of linearity can be lifted, that is,
that OLS is the best unbiased estimator (BUE), among a certain class of estimators.
See also [LW23] for the latest discussion of the results.

7.2.3. Standard errors. Heteroskedasticity does not affect the estimation of
β, that is, the formula β̂ = (X ′X)−1(X ′Y ) still stands. Moreover, the asymptotic
variance formula E[xx′]−1E[ε2xx′]E[xx′]−1 is valid either in the homoskedastic or het-
eroskedastic case. It is just that homoskedasticity admits a minor simplification.
Therefore, as long as we estimate the asymptotic variance using the general formula,
it is consistent to the correct variance regardless of the presence of heteroskedasticity.
This estimator is also known as the Huber–White standard error.

Theorem 7.5 (Heteroskedasticity-robust standard error). Under Assumption 7.1
and E[∥xi∥4] < ∞,(

1
n

n∑
i=1

xix
′
i

)−1( 1
n

n∑
i=1

ε̂2
ixix

′
i

)(
1
n

n∑
i=1

xix
′
i

)−1
p−→ E[xix

′
i]−1E[ε2

ixix
′
i]E[xix

′
i]−1.

Proof. By the LLN (Theorem 3.4), 1
n

∑
xx′ →p E[xx′]. With ε− ε̂ = x′(β̂ − β),

ε̂2xx′ = [ε− x′(β̂ − β)]2xx′ = ε2xx′ − 2[x′(β̂ − β)]εxx′ + [x′(β̂ − β)]2xx′.

First, 1
n

∑
ε2xx′ →p E[ε2xx′] by the LLN. Second, using |x′(β̂ − β)| ≤ ∥x∥∥β̂ − β∥,

∥ 1
n

∑[x′(β̂ − β)]εxx′∥ ≲ ∥β̂ − β∥ · 1
n

∑ |ε|∥x∥3 = OP ( 1√
n
) ·OP (1) = oP (1),
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since E[|ε|∥x∥3] ≤
√
E[ε2∥x∥2]E[∥x∥4] < ∞ by the Cauchy–Schwarz inequality. Third,

∥ 1
n

∑[x′(β̂ − β)]2xx′∥ ≲ ∥β̂ − β∥2 · 1
n

∑ ∥x∥4 = OP ( 1
n
) ·OP (1) = oP (1).

Then, the result follows by the CMT (Theorem 3.3) and Slutsky’s lemma (Theo-
rem 3.2). ■

Despite this general formula, most statistical software reports as default the fol-
lowing estimator that is valid only under homoskedasticity. One reason may be Propo-
sition 7.9. Some software such as Microsoft Excel does not even have an option to
report the robust one.
Proposition 7.6 (Default standard error). Under Assumption 7.1,3(

1
n

n∑
i=1

ε̂2
i

)(
1
n

n∑
i=1

xix
′
i

)−1
p−→ E[ε2

i ]E[xix
′
i]−1.

Exercise 7.3. Prove Proposition 7.6.
We can think of a regression version of Bessel’s correction for the conditional

variance. The following suggests using the divisor n − k in place of n, where k is
the dimension of β. This is referred to as small-sample correction or finite-sample
adjustment.
Proposition 7.7 (Small-sample correction). Under Assumptions 7.3 and 7.4,

E
[

1
n− k

n∑
i=1

ε̂2
i

∣∣∣∣∣ X
]

= σ2,

σ2A ≤ E
[

1
n− k

n∑
i=1

ε̂2
ixijxir

∣∣∣∣∣ X
]

≤ σ2B,

where A is the average of n−k smallest elements of {xijxir}n
i=1 and B of n−k largest

elements.
Proof. Observe that Ê = MXE where MX := I − X(X ′X)−1X ′ is the projec-

tion matrix onto the orthocomplement of the space spanned by X. Thus, E[Ê ′Ê |
X] = E[tr(E ′MXE) | X] = tr(E[EE ′ | X]MX) = E[ε2] tr(MX). Since the trace of a
projection matrix is the dimension of the target space and X has rank k, we have
tr(MX) = n− k. Therefore, 1

n−k
E[Ê ′Ê | X] = E[ε2].

Let Xj be the jth column of X and diag the operator that converts a vector into
a diagonal matrix. Then, E[∑ ε̂2

ixijxir | X] = E[tr(E ′MX diag(Xj) diag(Xr)MXE) |
X] = E[ε2] tr(MX diag(Xj) diag(Xr)). We can write MX = UΛU ′ for U orthogonal
and Λ diagonal with eigenvalues of MX . Then, the trace is bounded by the sums of
n−k largest and smallest diagonal elements of diag(Xj) diag(Xr) by [CR09, Theorem
4.1 and Corollary 4.2]. ■

There are a few more ways to correct for the possible bias in the variance estimator.
See [AP09, Chapter 8] for further reading.

3For this to be a valid asymptotic variance of β̂, we need Assumption 7.2.
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Remark 7.8. It is often observed in practice that the robust standard errors are larger
than the default ones. However, this relationship is not a theorem. Observe that
E[xx′]−1E[ε2xx′]E[xx′]−1 − E[ε2]E[xx′]−1 = E[xx′]−1 Cov(ε2, xx′)E[xx′]−1. So, the de-
fault standard errors can be larger if Cov(ε2, xx′) < 0.

7.2.4. Inference. With an estimator of the asymptotic variance, we can conduct
statistical inference on β. Usually, we are interested in whether the coefficient on one
regressor is nonzero; for example, when we want to examine the effect of schooling on
wages, we want to test whether the coefficient on schooling is nonzero. Also, we are
often interested in whether the entire set of regressors has any power of explaining
the dependent variable. In this case we want to test if all coefficients are zero. Such
hypotheses are given by a hypothesis of the form H0 : βj = 0 or H0 : β = 0. More
generally, we develop a method to test

H0 : βj = bj and H0 : Cβ = b,

where C is an (r× k) matrix of full row rank for some r ≤ k and b an (r× 1) vector.
Obviously, the former is a special case of the latter, but we state the results for the
two cases separately. Let

V̂ := 1
n

(
1
n

n∑
i=1

xix
′
i

)−1( 1
n− k

n∑
i=1

ε̂2
ixix

′
i

)(
1
n

n∑
i=1

xix
′
i

)−1

,

V̂0 := 1
n

(
1

n− k

n∑
i=1

ε̂2
i

)(
1
n

n∑
i=1

xix
′
i

)−1

.

Correction by n − k is unnecessary for the asymptotic validity of testing since (n −
k)/n → 1 for fixed k, but it is customary to use it nonetheless. In Stata, the reg
command uses V̂0 by default (e.g., reg y x), and the option vce(r) switches to V̂
(e.g., reg y x, vce(r)).

Theorem 7.8 (Asymptotic testing). For a full row-rank matrix C with rank r, let

tj := β̂j − βj√
V̂jj

, FC := (Cβ̂ − Cβ)′(CV̂ C ′)−1(Cβ̂ − Cβ)
r

.

Under Assumption 7.1 and E[∥xi∥4] < ∞, tj ⇝ N(0, 1) and rFC ⇝ χ2(r).

Proof. It follows from Theorems 7.1 and 7.5. ■

Remark 7.9. Without E[∥xi∥4] < ∞ but with Assumption 7.2, we may replace V̂ by
V̂0.

The statistic tj is called the t-statistic for the hypothesis H0 : βj = bj and FC

the F -statistic for the hypothesis H0 : Cβ = b. For example, the hypothesis H0 :
(β0, β1) = (1, 2) is translated as

C =
[
1 0 · · · 0

1 0 · · · 0

]
, b =

[
1
2

]
.
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It can also test a hypothesis on a linear combination, e.g., H0 : 2β0 − β1 = 3 is
identified as

C =
[
2 −1 0 · · · 0

]
, b = 3.

In most statistical software, the t-statistics and the F -statistic for the hypotheses
H0 : βj = 0 and H0 : β−0 = 0 are given as part of the standard output, where β−0
stands for the vector of coefficients excluding the intercept if exists. This latter hy-
pothesis can be interpreted as the hypothesis that all regressors are meaningless in
predicting yi. To see this, observe that under this hypothesis, the regression equation
reduces to yi = β0 + εi if the intercept is included and to yi = εi if not. In either
case, it is saying that predicting yi using the information of xi is equivalent to pre-
dicting yi without using any information. Thus, under this hypothesis, the regressors
collectively have no predictive power on yi.
Example 7.2 (Hedge funds). Hedge funds are seeking to produce returns that are not
affected by the performance of the whole stock market, which they call the absolute
return. Let yi be the excess return of a hedge fund and xi be the excess return of
S&P 500, which is a proxy for the market return. To test whether the hedge fund
return is orthogonal to the market return, you run the regression yi = β0 + β1xi + εi.
Which hypothesis do you want to test? What are the values of C and b?
Exercise 7.4 (Index funds). The index fund is a mutual fund that aims to reproduce
the benchmark return such as S&P 500 and Nasdaq. Let yi be the excess return of
an S&P 500 index fund and xi be the excess return of S&P 500. To assess the quality
of the index fund, you run the regression yi = β0 + β1xi + εi. Which hypothesis do
you want to test? What are C and b?
Exercise 7.5 (Buffett’s alpha). Let yi be the excess return of Warren Buffett’s
portfolio. To know the source of his alpha, you decide to decompose his returns
into the factors proposed in the Fama–French three-factor model: the market factor
measured by the market excess return (MER), the size factor measured by the small-
minus-big market capitalization (SMB), and the value factor measured by the high-
minus-low book-to-market ratio (HML). You run the regression yi = β0 + β1MERi +
β2SMBi + β3HMLi + εi. To investigate if Buffett’s return can be explained by any
of these factors, which hypothesis do you test? What are C and b? What about the
hypothesis that there is Buffett’s alpha not explicable by these factors?
Remark 7.10. The statistic rFC is called the Wald statistic. The chi-square test can
be easily extended to nonlinear smooth hypotheses [Hay00, Proposition 2.3].

A practice that is as popular as using the small-sample correction of the standard
errors is to use the critical values from a t- or F -distribution in lieu of a normal or
chi-square distribution. Its justification relies on the strong assumption of conditional
linearity and normality that hardly any practitioner believes.4 However, the critical
values thusly constructed are slightly more conservative than—and converge in the
limit to—the ones from a normal or chi-square and hence give practitioners a (false)

4Note also that the variance used to normalize the test statistics must be the default one.
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sense of security that the conclusions are not entirely based upon the asymptotic
approximation.5

Proposition 7.9 (Finite-sample testing). For a full row-rank matrix C with rank r,
let

t0,j := β̂j − βj√
V̂0,jj

, F0,C := (Cβ̂ − Cβ)′(CV̂0C
′)−1(Cβ̂ − Cβ)

r
.

Under Assumptions 7.3 and 7.5, t0,j | X ∼ t(n−k) and F0,C | X ∼ F (r, n−k), where
t(m) is the t-distribution with m degrees of freedom and F (r,m) the F -distribution
with r and m degrees of freedom.

Proof. Write

t0,j = β̂j − βj√
σ2(X ′X)−1

jj

·
(

1
n− k

Ê ′Ê
σ2

)−1/2

.

The first fraction follows N(0, 1) conditional on X. Since E
σ

| X ∼ N(0, I) and MX

is symmetric and idempotent with rank n − k, we have that Ê ′Ê
σ2 = E

σ

′
MX

E
σ

follows
χ2(n − k) conditional on X. Next, being linear functions of E , both β̂ and Ê are
jointly normal conditional on X. Since Cov(β̂, Ê | X) = 0 by Proposition 7.3, we have
β̂ ⊥ Ê | X. In a nutshell, t0,j = A/

√
B

n−k
where A | X ∼ N(0, 1), B | X ∼ χ2(n− k),

and A ⊥ B | X. By the definition of the t-distribution, t0,j | X ∼ t(m).
Next, write

F0,C = (Cβ̂ − Cβ)′[σ2C(X ′X)−1C ′]−1(Cβ̂ − Cβ)
r

·
(

1
n− k

Ê ′Ê
σ2

)−1

.

Note that Cβ̂ − Cβ | X ∼ N(0, σ2C(X ′X)−1C ′). By the definition of the chi-
square distribution, (Cβ̂ − Cβ)′[σ2C(X ′X)−1C ′]−1(Cβ̂ − Cβ) | X ∼ χ2(r). By the
same argument as before, this is independent of Ê ′Ê conditional on X. In sum,
F0,C = (A

r
)( B

n−k
)−1 where A | X ∼ χ2(r), B | X ∼ χ2(n− k), and A ⊥ B | X. By the

definition of the F -distribution, F0,C | X ∼ F (r, n− k). ■

A joint confidence set for β leads to a uniform confidence band for the population
regression line. For each x, it boils down to maximizing or minimizing x′b with respect
to b subject to b belonging to the confidence set; for an elliptic confidence set with
Theorem 7.8, b belongs to it if and only if FC ≤ c for β = b and the critical value c
corresponding to the confidence level. Figure 7.3 shows an example of a 99% uniform
confidence band for the first regression in Example 7.5 when C is set to be the identity
matrix. Note that this is not a 99% prediction band, so the band does not contain
99% of the observations; rather, the probability that this band could have realized at
a place that contains the true regression line was 99%.

5A possibly more justifiable way to account for the error of asymptotic approximation is to use
the Edgeworth expansion or the Berry–Esseen theorem (Proposition 3.6).
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Figure 7.3. 99% uniform confidence band around the regression line
in Figure 7.9a.

7.2.5. Analysis of Variance (ANOVA). The orthogonality E[xε] = 0 implies

E[y2] = E[(x′β)2] + E[ε2].
If x has an intercept, we may subtract E[y]2 from both sides and write

Var(y) = Var(x′β) + Var(ε).
The first term describes the amount of the variance of y that can be attributed to
(a linear function of) x, and the second term is the remainder. If β = 0, then x has
no power of explaining y, hence Var(y) = Var(ε); if x′β perfectly explains y, then
Var(y) = Var(x′β). In short, the ratio (the “population R2”)

Var(x′β)
Var(y) = 1 − Var(ε)

Var(y)
gives the proportion of variation of y explained by x′β. A plug-in estimator of this,

R2 := 1 −
1
n

∑
ε̂2

i
1
n

∑(yi − ȳn)2 = 1 −
∑
ε̂2

i∑(yi − ȳn)2 ,

is called the coefficient of determination, or simply R-squared, and used as a goodness-
of-fit measure. We can also adopt small-sample correction

R̄2 := 1 −
1

n−k

∑
ε̂2

i
1

n−1
∑(yi − ȳn)2 ,

which is called the adjusted coefficient of determination or adjusted R-squared. Note
that R̄2 is still a biased estimator of the population R2; the numerator and the de-
nominator may be unbiased for their own sake, but the reciprocal of an unbiased
estimator is not an unbiased estimator of the reciprocal. The R2 has a nice rela-
tion to the customarily reported default F -statistic; F0,C for the hypothesis that all
coefficients but for the intercept are zero (H0 : β−0 = 0) can be written as

F0,C =
1

k−1R
2

1
n−k

(1 −R2) .
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When the regressor does not include an intercept, all of the above arguments must be
done for the second moments, e.g., 1

n

∑
y2

i instead of 1
n−1

∑(yi−ȳn)2. Then, respective
R2 is called uncentered.

Although the above discussion applies to both homo- and heteroskedastic cases, it
does not make much sense to decompose the marginal variance of y into the marginal
variances of x and ε when heteroskedasticity is concerned. Therefore, R2 is less used,
and the F -statistic—which naturally extends to heteroskedastic errors—is preferred
as a primary measure of goodness-of-fit in economics.

7.3. Weighted Least Squares

When sampling is biased or the data is collapsed into a frequency table, a simple
average of the dataset fails to estimate the intended population average. In some
cases, we can get rid of this bias by weighting.

The weighted least squares (WLS) estimator is defined as the solution to

min
b∈Rk

n∑
i=1

wi(yi − x′
ib)2

for some nonnegative weights wi. The following are practical situations to use WLS.
The first three are to recover β in the population linear projection, while the fourth
is to have a smaller variance than OLS under conditional linearity.

(1) Frequency weighting (wi = ni): When observation i represents ni obser-
vations, this weighting duplicates the observation ni times. This appears,
e.g., when categorical observations are converted into frequency tables. This
weighting corresponds to [fweight=ni] in Stata.

(2) Analytic weighting (wi = ni): When observation i is an average of ni obser-
vations, this weighting inflates the observation by √

ni. This comes from the
fact that the averaged equation ȳi = x̄′

iβ + ε̄i shrinks the standard deviation
by 1/√ni under independence. This situation occurs, e.g., when observations
are anonymized into group-wise averages. This weighting is implemented as
[aweight=ni] in Stata.

(3) Inverse probability weighting (wi = p−1
i ): When observation i is sampled with

probability pi, this weighting counterbalances the sampling bias. Dividing
by pi downweights overrepresented observations and upweights underrepre-
sented ones, thereby restoring the sample that properly represents the pop-
ulation. This is used when sampling frequency is uneven, e.g., for stratified
sampling. This weighting is specified as [pweight=p−1

i ] in Stata.
(4) Inverse variance weighting (wi = E[ε2

i | xi]−1): When conditional linearity
holds in an unsaturated model and conditional heteroskedasticity is known
or estimable, this weighting yields a more efficient estimator than the plain
vanilla OLS.

The first three are practically important, though not much theory to tell. The
fourth is specifically called the generalized least squares (GLS) and is related to ex-
ploiting conditional linearity to improve efficiency (Remark 7.3).
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Proposition 7.10 (Semiparametric efficiency of feasible GLS). Suppose that E[ε2
i |

xi] is bounded away from 0 and there is a uniformly consistent estimator ̂E[ε2
i | xi] of

E[ε2
i | xi] on the support of xi. Under Assumptions 7.1 and 7.3,

β̂FGLS := arg min
b∈Rk

n∑
i=1

̂E[ε2
i | xi]

−1
(yi − x′

ib)2

is semiparametrically efficient and satisfies
√
n(β̂FGLS − β)⇝ N

(
0, E[E[ε2

i | xi]−1xix
′
i]−1

)
.

Proof. Proceed as in Theorem 7.1 and [vdV98, Example 25.28]. ■

One drawback of feasible GLS is that if Assumption 7.3 fails, it loses the inter-
pretation as the linear projection of E[y | x] onto x. It is still a linear projection with
respect to some inner product, but we don’t know what it is. A further reading in
[RW17]. For the finite-sample optimality of GLS, see [Hay00, Proposition 1.7].

7.4. Designing the Regression Equation

Econometric theory often assumes the regression equation as given. However,
choosing the right equation is a nontrivial and essential step in applied research. In
this section, we see some guidance on how to choose an equation.

7.4.1. The intercept. While the theory works with or without the intercept, in
most practical situations, it only makes sense to include it. A natural situation in
which we should exclude it is when linear regression is used to decompose y into a
weighted average of x, such as hedge fund replication [HL07] or the cost of capital
decomposition [CP05]. We may also exclude it when there is a good reason to believe
that the linear projection of y on x passes through the origin. For example, the CAPM
predicts that

r − rf = β(rm − rf ) + ε,

where r is the return of an asset of interest, rf the risk-free rate, and rm the market
return. However, even in this case, the intercept is casually included in practice.
Indeed, the intercept, if nonzero, has the interpretation as the “alpha” of the asset,
so it is still meaningful to examine its nullity rather than assuming it. One possible
exception may be that to test the hypothesis that the alpha is zero, we may run
the regression without the intercept and choose to do the LM test (Section 6.5), but
this is still somewhat contrived. Another example is the panel data model in which
the intercept is replaced with fixed effects, but this is rather a generalization of the
intercept than a case without it.

The bottom line is that the intercept is included in almost all linear regressions
carried out in economics research.
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7.4.2. Dummy variables. The regression framework requires that xi is a nu-
merical variable. Categorical data, therefore, need to be transformed into numerical
data. The standard method is to use the dummy variable (or design variable).

Suppose that x̃i is a variable representing the gender, that is, x̃i ∈ {male, female}.
To include it in the regression, we create a new variable xi1 = 1{x̃i = male} and
include it in the regression. Suppose we run the regression on xi = (1, xi1)′,

yi = β0 + β1xi1 + εi.

By orthogonality, E[εi] = 0 and E[xi1εi] = 0. This implies E[εi | xi1] = 0 and hence
E[yi | xi1 = 0] = β0, E[yi | xi1 = 1] = β0 + β1.

Thus, the model satisfies conditional linearity (Assumption 7.3) by construction, and
β admits a very clear interpretation. For example, the predictive difference of yi

in gender can be tested by the hypothesis H0 : β1 = 0. If the regression equation
automatically satisfies conditional linearity, the model is called saturated.

If x̃i is a categorical variable that takes k values, then the best practice is to
create k − 1 dummy variables indicating each but one category. For example, let
x̃i ∈ {0, 1, . . . , k − 1} and define xij = 1{x̃i = j}. Then the regression equation is
(7.1) yi = β0 + β1xi1 + · · · + βk−1xi,k−1 + εi.

We can again infer that E[εi | x̃i] = 0 and hence
E[yi | x̃i = 0] = β0, E[yi | x̃i = j] = β0 + βj

for j = 1, . . . , k− 1. Again, the model is saturated. The category x̃i = 0 is called the
base category and the coefficients on the dummy variables measure the difference of
the mean of yi of their groups relative to the base category.

What happens if we instead run regression on all dummy variables? Write the
regression equation as

yi = α + β0xi0 + β1xi1 + · · · + βk−1xi,k−1 + εi.

Since xi0 + · · · + xi,k−1 is always 1, we see that the equation
yi = 0 + (α + β0)xi0 + (α + β1)xi1 + · · · + (α + βk−1)xi,k−1 + εi

is equally valid. In other words, α and β are not separately identified. This problem
is known as multicollinearity since the intercept and the sum of xijs are linearly
dependent. Theoretically, it violates invertibility of E[xix

′
i] and X ′X.

Alternatively, multicollinearity can be avoided if we exclude the intercept,
(7.2) yi = γ0xi0 + γ1xi1 + · · · + γk−1xi,k−1 + εi.

With this formulation, we have γj = E[yi | xij]. Therefore, there is a one-to-one
relationship with the coefficients in (7.1),

γ0 = β0, γj = β0 + βj

for j = 1, . . . , k − 1. This holds in sample as well, so γ̂0 = β̂0 and γ̂j = β̂0 +
β̂j numerically. Therefore, there is no material difference between (7.1) and (7.2).
However, (7.1) is practically preferred since it is easier to handle when there are
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other variables to include. If there is more than one categorical variable, having an
intercept and excluding one base category from each categorical variable lifts our
burden of having to keep track of which variables to include.6

A bad practice is linear-in-category modeling. Sometimes a categorical variable
is given in the form of numerical values; for example, the Standard Industry Classi-
fication (SIC) classifies industries with a 4-digit number. For a numerical categorical
variable x̃i, it might be tempting to run

(7.3) yi = β0 + β1x̃i + ε.

This assumes that the increment of the predicted yi from x̃i = 0 to x̃i = 1 is the same
as that from x̃i = 1 to x̃i = 2, which does not make sense if x̃i is nominal. When
x̃i is ordinal, there might be cases where this is reasonable, but even so, the dummy
variable approach is usually preferred. Note that the dummy variables model sub-
sumes the linear-in-category model, that is, if βj − βj−1 is constant, (7.1) reduces to
(7.3). Therefore, the dummy variables model allows us to estimate the model without
imposing (but not excluding) the constant increment case. Also, economists have a
general preference toward saturated models. Saturated models grant the interpreta-
tion as the conditional expectation without imposing any assumption (other than the
existence of moments). In this sense, they are examples of a nonparametric model
that is free of our speculation over specification.

7.4.3. Interaction terms. Suppose we want to investigate gender discrimina-
tion in salary. We have three variables: salary yi, gender x̃i1 ∈ {male, female}, and
experience x̃i2 ∈ {experienced, inexperienced}. Since we have two categorical vari-
ables, we may model it as

yi = β0 + β1xi1 + β2xi2 + εi,

where xi1 = 1{x̃i1 = male} and xi2 = 1{x̃i2 = experienced}. By orthogonality,
E[εi] = E[xi1εi] = E[xi2εi] = 0. This implies E[εi | xi1] = E[εi | xi2] = 0 but not
E[εi | xi1, xi2] = 0. Therefore, the model is not saturated and conditional linearity
may not hold. Specifically, this model assumes that the gender difference in salary for
experienced employees is the same as the gender difference in salary for inexperienced
employees. If male and female are rewarded differently on their experiences, this
model cannot capture that aspect. However, it is sensible to expect this as the
starting salary is difficult to discriminate.

To capture the gender difference in the reward on experience, consider

(7.4) yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi.

Then the reward on experience for female is captured by β2 while that for male by
β2 + β3. Thus, β3 captures the gender difference in how experience is rewarded. The
newly introduced term xi1xi2 is called the interaction term between xi1 and xi2. Note

6An exception is the fixed effect model, in which the intercept is replaced with a set of dummy
variables for various groups.
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(a) Salaryi = β0 +β1Malei +β2Expi +εi.
This specification sets different intercepts
but a common slope across genders.
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(b) Salaryi = β0 + β1Malei + β2Expi +
β3Malei×Expi+εi. This specification sets
different intercepts and different slopes
across genders.

Figure 7.4. The effect of an interaction term. The model (a) has no
interaction term and fits two parallel lines for salary vs. experience that
have different intercepts. The model (b) has an interaction term and
fits two lines that have different slopes as well as different intercepts.

that orthogonality also implies E[xi1xi2εi] = 0, so we get E[εi | xi1, xi2] = 0. In other
words, the model is saturated such that

E[yi | xi1 = xi2 = 0] = β0, E[yi | xi1 = xi2 = 1] = β0 + β1 + β2 + β3,

E[yi | xi1 = 1, xi2 = 0] = β0 + β1, E[yi | xi1 = 0, xi2 = 1] = β0 + β2.

We can also create interaction terms between a categorical variable and a numer-
ical variable, or between two numerical variables. Suppose that the experience was
measured by how many years an employee has worked. Then, β3 in (7.4) measures
the change in the slope of the reward on experience by gender (Figure 7.4). In that
case, however, the model is not saturated.

Exercise 7.6. Design a regression equation that fits two distinct quadratic curves
to salary against experience across genders in Figure 7.4.

7.4.4. Higher-order terms and nonlinear transformations. If xi is a nu-
merical variable, there is usually little reason to expect that the conditional expec-
tation of yi given xi is linear in xi. However, linear regression is not constrained to
models that are linear in variables. Adding polynomials such as x2

i and x3
i is a powerful

way to make linear regression flexible. These are called higher-order terms. If there
is more than one variable, then we may consider adding interactions of higher-order
terms as well. In a way, x2

i is an interaction term of xi with itself.
We may also use other transformations. In the context of time series, trigono-

metric functions are used to account for seasonality, known as harmonic regression.
When we suspect that the effect of xi on yi is multiplicative, the logarithm function
is used. For example, the effect of schooling on wages is considered multiplicative in a
sense that receiving one more year of education would multiply—rather than add—to
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linearity and heteroskedasticity.
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(d) Log wage against schooling shows less
nonlinearity and heteroskedasticity.

Figure 7.5. Logarithm transformation of wages. Data from [Car95].

one’s current wage (Figure 7.5). Therefore, the Mincer earnings regression considers
log wagei = β0 + β1schoolingi + εi.

Since wages are nonnegative and the income distribution resembles lognormal, this
specification makes sense.7 The log transformation is also used for time series data to
deal with the rate of change of a variable. For example, when we consider the process
of stock returns, we may regress the log stock price on its past values as

log pt = β0 + β1 log pt−1 + εt.

While we could have explicitly computed the stock return by pt−pt−1
pt−1

, the logarithm
emulates the similar effect since

pt − pt−1

pt−1
≈ log

(
1 + pt − pt−1

pt−1

)
= log pt − log pt−1,

and it does not shave off the sample size by one. If the price is considered in continuous
time, the log price makes more sense in that it represents an infinitesimal return.

There are also situations in which economic theory suggests a specific regression
equation. Suppose we are interested in how the demand Q changes in response to the

7If income is determined by the product of independent factors, the CLT implies that it dis-
tributes according to a lognormal [HS15].
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change in price P . If we model it as
Qi = β0 + β1Pi + εi,

we are assuming that the effect of the price increase from $100 to $110 is the same as
that from $1,000 to $1,010, and that the effect on the goods . However, it is rather
sensible to assume that the change from $100 to $110 is more comparable with the
change from $1,000 to $1,100. Similarly on the quantity side, it makes more sense to
think in terms of the relative change rather than the absolute change so that the effect
is measured in units independent of the market size. In this case, the effect of price
on quantity demanded we care about is not ∆Q

∆P
but rather ∆Q/Q

∆Pi/P
. For infinitesimal

changes, this is equivalent to ∆ log Q
∆ log P

, which is called the price elasticity of demand.
This motivates the regression equation

logQi = β0 + β1 logPi + εi.

On the supply side, the functional form of a production function that is analytically
the easiest to handle is known as the Cobb–Douglas production function and is given
by Y = AKαLβ where Y is the production, K the capital, L the labor, and A the
total factor productivity. This motivates the regression

log Yi = γ + α logKi + β logLi + εi,

where α and β have the interpretation as the output elasticities of capital and labor,
and γ the logarithm of the total factor productivity. In macroeconomics, the Solow
growth model motivates a specific type of regression equations for investigating eco-
nomic growth [Ace09, Section 3.2].

Example 7.3 (Accounting conservatism). Accounting practice has long employed
the principle of conservatism that “anticipates no profits but anticipates all losses.”
At first sight, one might suspect that this is a company’s effort to avoid corporate
taxes, but such conservatism predates corporate taxes, shareholder litigation, and
accounting regulation, so the origin is actually not clear. In the literature, there is
an explanation of conservatism as a commitment device to cope with information
asymmetry between managers and claimholders. [Bas97] considers an asymmetric
regression to estimate the degree of accounting conservatism. If the market is efficient,
the stock return reflects all public information and hence is a good proxy for fair
economic value. This motivates the following equation

Iit = α0 + α11{Rit < 0} + β0Rit + β1Rit1{Rit < 0} + εit,

where Iit and Rit are the earnings and stock return for firm i in year t. Here, α1 and
β1 measure the changes of the intercept and slope in the correspondence between the
accounting earnings and stock returns when the market returns are negative.

7.4.5. Residual diagnostics. So far, we had some theoretical guidance on the
design of the regression equation. In many cases, however, there is only so much
theory can tell. In general, how can we “detect” wrong specification when we want
to recover the conditional expectation?
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If there is only one regressor, scatterplotting yi against xi reveals a rough shape
of E[yi | xi] (as in Anscombe’s quartet). When there is more than one regressor,
plotting a multidimensional relationship is usually hard, so we need to rely on some
dimension reduction before visualizing the data. However, scatterplotting yi against
each regressor does not provide much information since their relationship is heavily
affected by the variation of other regressors. To circumvent this problem, we often
plot the residual ε̂i against each regressor. Such heuristic visual assessment is called
residual diagnostics.

If the conditional linearity (Assumption 7.3) holds, we have E[εi | xi] = 0, which
further implies E[εi | xij] = 0 for every j by the law of iterated expectations (The-
orem 2.9). Therefore, if the scatter plot of ε̂i against some regressor exhibits non-
linearity, we suspect that the conditional expectation function is different from the
specification of the linear regression. Meanwhile, having E[εi | xij] = 0 for every j
does not imply E[εi | xi] = 0, so there are specification errors that stay under the
radar of these plots. One possible remedy for this is to use the fact that E[εi | xi] = 0
if and only if E[εi | f(xi)] = 0 for every real-valued measurable function f : Rk → R.
Thence, we can plot the residual against various one-dimensional transformations of
the regressors (e.g., the fitted value) to detect misspecification in finer detail.

These plots are also useful in detecting a possible violation of conditional ho-
moskedasticity (Assumption 7.4). Also, when we suspect the data might contain
outliers, these plots help discern outliers in εi from simply large observations of εi

due to conditional heteroskedasticity.
Figure 7.6 shows an example of the residual diagnostics for the model

yi = β0 + β1xi + β2x
2
i + εi.

The scatterplots of yi against xi and x2
i exhibit inherent nonlinearity and are not

helpful in judging the specification accuracy (Figures 7.6a and 7.6b). Meanwhile, the
plots of ε̂i against xi and x2

i show flat overall locations as well as constant variations
(Figures 7.6c and 7.6d), so we can diagnose that the conditional linearity and con-
ditional homoskedasticity hold under this specification and that there are no obvious
outliers.

7.5. Specification Search

Given the flexibility of linear regression, it is tempting to engage in specification
searching. That is, for a given dataset, we try various regressions to hunt for the
“best” one, be it the highest R2 or the most significant β̂. There are two problems
associated with this practice: (1) overfitting and (2) data snooping, or more cynically,
p-hacking.8

The problem of overfitting occurs when we include too many regressors. Suppose
that y is independent of all regressors. Then the population equation y = x′β + ε
holds with β = 0, meaning Var(x′β) = 0 and Var(ε) = Var(y). However, if we include
as many regressors as observations, the residual can be made identically zero and x′β̂

8Not to be confused with data mining, which is a fine branch of statistics and computer science.
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Figure 7.6. Residual diagnostics for E[yi | xi] = β0 + β1xi + β2x
2
i .

The plots (c) and (d) indicate that the conditional expectation seems
correctly specified. Meanwhile, the plots (a) and (b) are not very help-
ful in diagnosing misspecification.

seems to explain the entirety of y. If we use small-sample correction (Proposition 7.7),
we get a warning that the standard error is undefined rather than zero, but this is
not a fundamental solution to the problem of overfitting.9

A practical solution to overfitting is to use methods that can account for it. For
example, the least absolute shrinkage and selection operator (LASSO) method selects
regressors from a large pool when only a handful of them are strong predictors [BC11].
The ridge regression also makes regression possible when there are more regressors
than the sample size.

A similar but distinct situation is when we have many statistical models to try,
instead of many regressors to try in one regression model. A general solution to
compare different models is to appeal to sample splitting techniques such as the
holdout method, cross-validation, and cross-fitting. If the models admit a common
structure, there may be a metric by which to compare them, such as the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) [Gre18,
Section 5.8].

Meanwhile, the problem of p-hacking is much nastier. This occurs when we run
several regressions to find a significant coefficient and hide insignificant results. As
stated in Section 5.6, this practice is problematic since the statistical discovery is
upheld by the rarity of a rejection. If we are allowed to observe many estimates, we
would casually encounter a “rare” one by chance; then, cherry-picking the estimates
for reporting makes rarity common.

9Also, Bessel-type correction is often not available in nonlinear models.
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Figure 7.7. Distribution of t-statistics in published articles has a
hump around 1.96 [BLSZ16, Figure 1].

In practice, there are some situations in which a researcher might be motivated to
do so. For example, a dataset might be obtained with huge costs, and the researcher
might be inclined to write a few papers off of it even after the researcher’s initially
intended results could not have been obtained; a journal may have a tendency to
publish significant results more often than insignificant ones (publication bias, Fig-
ure 7.7), and the researcher may not care to report a vast number of insignificant
results generated in the course of research. However, reporting a selected few as if
they are a legitimate discovery (i.e., as if they are the only ones tested) is a form of
fabrication of research. In many cases, such mistakes are made without bad intentions
but with the lack of care or unfamiliarity with statistics.

This vulnerability to selective reporting is inherent in any scientific discipline
whose primary mode of reasoning is inductive and exact reproduction of the data is
costly, thus notably in social science and medicine. In these fields, it is sometimes
reported that a number of previous findings cannot be replicated in the followup
research. This is often provocatively called the replication crisis.

To cope with this problem, these disciplines have adopted a few changes over the
past decades. The first is pre-analysis plan. There are repositories that store plans
of research, including what data to collect, which regression equations to estimate,
and what tests to examine. The analysis plans should be submitted before the data
is collected. With this, researchers have a way to prove that what they report in the
paper is not a result of p-hacking but a legitimate discovery. If they want to try more
specifications, they can do so with a specific note clarifying that the additional results
are obtained after they observed the data, leaving the readers the discretion to take
them with a grain of salt.

The second change is that more and more journals are accepting results that are
not statistically significant. If the research is well-motivated and the method is sound,
the fact that few significant results are found is not necessarily seen as a downside or
a lack of contribution. Along with this, some journals now prohibit authors to put
a star “∗” next to the estimates in the regression table that indicates significance, a



96 7. LINEAR REGRESSION

practice that once was so popular that it endorsed screening papers based thereon
without much attentive reading.

Statistics also provides some methods to guard against p-hacking, albeit the use
of them still requires discipline and honesty of the users. For example, multiple
hypothesis testing provides a way to take into account the dilution of rarity when
many hypotheses are tested, in which the proportion of rejections instead of the
probability of each rejection is controlled. See Section 5.6 and references therein.
Recently, a statistical method to test the existence of p-hacking was also proposed,
and gave a mixed conclusion when applied to economics papers [EKW22].

7.6. Simpson’s Paradox and the Frisch–Waugh Theorem

Does adding a new regressor change the coefficient of an existing regressor? The
answer is not only affirmative, but the change can sometimes be drastic and counter-
intuitive. The phenomenon that a coefficient of a regressor flips its sign after adding
a new variable is known as Simpson’s paradox.

Example 7.4 (Graduate admission at Berkeley). In 1973, the associate dean of the
graduate school at UC Berkeley found that only 35% of female applicants were admit-
ted compared to 44% of male applicants, and asked Peter Bickel, a renowned professor
of statistics, to investigate the issue [BHO75]. The sample consists of applications to
the graduate programs in the six largest majors [FPP07, Section 2.4]. The regression
of admission on gender gives

̂Admittedi = 0.30
(0.011)

+ 0.14
(0.014)

Malei,

where the numbers in parentheses are the robust standard errors. This roughly means
that male applicants are admitted 14% more than female applicants, and this coeffi-
cient is statistically significant. When we include the dummies for majors, we get

̂Admittedi = 0.66
(0.020)

− 0.02
(0.015)

Malei − 0.01
(0.025)

Bi − 0.30
(0.023)

Ci − 0.31
(0.023)

Di − 0.40
(0.025)

Ei − 0.59
(0.019)

Fi.

In this regression, the coefficient on gender flips its sign and is no longer significant.
One explanation of this is the difference in the numbers of applicants across majors.
Figure 7.8 shows that many male applicants applied to less selective majors, like
mechanical engineering, and many female applicants to more selective majors, like
English.

Example 7.5 (Class size and test scores). The relationship between class size and
education quality is not trivial. One may speculate that the smaller the class size,
the more time and attention a teacher can spend for each student, hence the higher
educational effect; however, the observed relationship is not always so straightforward.
Using the data from Israeli public schools, [AL99, Table II] report that regressing
4th graders’ test scores for reading comprehension on class size gives

R̂eadingi = 68.2
(1.12)

+ 0.141
(0.033)

ClassSizei.
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Figure 7.8. Berkeley’s admission data illustrate Simpson’s paradox
[BHO75]. Six majors are labeled through A to F. The overall admis-
sion rate in the six majors for males is 44.5% while for females is 30.4%,
exhibiting a huge difference. However, the admission rate conditional
on each major does not seem to differ much by gender. A large factor
contributing to the lopsided total admission rates is the fact that many
male applicants have applied to less selective majors (A and B) while
many female applicants to more selective ones (C to F).

Therefore, the predicted test score decreases with a reduced class size (Figure 7.9a).
When we include the percentage of students with disadvantaged backgrounds, we get

R̂eadingi = 78.8
(1.03)

− 0.053
(0.028)

ClassSizei − 0.339
(0.013)

Disadvantagedi.

This means that the predicted test score increases as the class size is reduced, once we
control for the percentage of disadvantaged students (Figure 7.9b). Possible reasons
may be that larger schools are located in big cities while smaller schools in poor towns
where the overall environment is disadvantaged, or that school principals may group
lagging students into smaller classes. The authors then estimate the causal effect of
a reduced class size using an instrumental variable method (Example 9.15).

The simplest way to illustrate this phenomenon is to think about adding an in-
tercept. Consider two regression equations

yi = γ1xi1 + εi versus yi = β0 + β1xi1 + εi.

Demeaning both sides of the second equation gives

yi − E[yi] = β1(xi1 − E[xi1]) + εi − E[εi] = β1(xi1 − E[xi1]) + εi,

where E[εi] = 0 by orthogonality. Thus, the regression line for the second equation
goes through (E[xi1],E[yi]) while that for the first through (0, 0). In other words, the
first regression imposes the restriction that the linear line passes through the origin,
while the second does not and finds out that the best adjustment of the level is such
that the line passes through (E[xi1],E[yi]).
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class size finds a significantly positive
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(b) Controlling for the percentage of disad-
vantaged students makes the coefficient on
class size negative.

Figure 7.9. Simpson’s paradox in the relationship of the average read-
ing score and the class size for 4th graders [AL99, Table II (7)–(8)].
When conditioned on the percentage of students with disadvantaged
backgrounds, the slope of class size on reading flips its sign.

This exercise also reveals that β1 is equivalent to γ1 where both yi and xi1 are
replaced by their demeaned versions. Mathematically,

γ1 = E[xi1yi]
E[x2

i1]
, β1 = Cov(xi1, yi)

Var(xi1)
.

Exercise 7.7. Show that β1 is equivalent to γ1 where xi1 is demeaned but not yi.

If adding an intercept creates an effect of demeaning variables, what effect does
adding a random variable create? In linear projection terms, demeaning can be
considered the projection onto the orthocomplement of the space spanned by the
intercept—the demeaned variable and the intercept have a zero cross moment. This
observation generalizes to other random variables. Consider

yi = x′
i1β1 + x′

i2β2 + εi.

(The intercept may or may not be in either vector xi1 or xi2.) Let M2 be the projection
operator onto the orthocomplement of xi2, that is,

M2(z) := z − x′
i2E[xi2x

′
i2]−1E[xi2z].

Then, β1 can be found in the regression
M2(yi) = M2(x′

i1)β1 + εi.

This argument goes through just as well in the sample (by replacing expectations with
sample averages and parameters with estimates), which is known as the Frisch–Waugh
theorem.

Theorem 7.11 (Frisch–Waugh). Let Y = Xβ̂+Ê = X1β̂1+X2β̂2+Ê be an estimated
equation. Suppose that X ′X is invertible. Then, β̂1 = (X ′

1M2X1)−1X ′
1M2Y where

M2 := I −X2(X ′
2X2)−1X ′

2.
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Proof. Since M2X2 = 0 and X ′
2Ê = 0, multiplying X ′

1M2 to Y = Xβ̂ + Ê yields
X ′

1M2Y = X ′
1M2X1β̂1+X ′

1Ê = X ′
1M2X1β̂1. Then X ′

1M2X1 is invertible if X ′X is. ■

This theorem tells us that including X2 does not change β̂1 if X2 is orthogonal to
X1, that is, if the sample correlation of X1 and X2 is zero. In population terms, if
the correlation of xi1 and xi2 is zero, the target coefficient on xi1 remains unchanged.

Note that the projection onto the orthocomplement of X2 is nothing but the
residual of the regression on X2. Therefore, we can estimate β1 by running two
smaller regressions. Let the regression of X1 on X2 be

X1 = X2Π̂ + V̂ .

Since Π̂ = (X ′
2X2)−1X ′

2X1, we get V̂ = X1 −X2(X ′
2X2)−1X ′

2X1 = M2X1. This means
that in order to obtain the coefficient of X1 in the regression of Y on (X1, X2), we can
first regress X1 on X2 and then regress Y on the residuals of the first regression.10 This
elimination of X2 from the original regression is called partialing out, and historically
was used to reduce inversion of a huge matrix into inversion of smaller matrices in the
old days when computers were not as powerful. Today, partialing out has no practical
value, but it still retains theoretical value in simplifying the analysis of regression and
in understanding the problem of endogeneity for causal inference.

7.7. Nonparametric Regression

The model cannot be saturated if a regressor is continuous. However, we can
saturate the model asymptotically if E[y | x] is smooth. For example, if E[y | x] is
analytic, then it has a representation by a Taylor series. Then, if we gradually add
higher-order polynomials as n gets large, we might be able to recover E[y | x] in the
limit. The polynomial regression considers

yi = β0 + β1xi + β2x
2
i + · · · + βkx

k
i + εi,

where k is set to diverge at an appropriate rate as n → ∞. If E[y | x] is a square-
integrable function on a bounded domain, it has a representation by a Fourier series.
Then, by gradually adding higher-frequency trigonometric functions, we might recover
E[y | x] in the limit. These are examples of an adaptive estimation method called
the sieve estimation, which involves optimization over a gradually enriched sequence
of models.11

Generally, there are many different methods to recover the conditional expectation
nonparametrically. They can be largely classified into two categories: the global
approach that aims to approximate E[y | x] as a whole function and the local approach
that aims to approximate E[y | x] at each point or on a small region.

(1) Global linear approach. The method that uses a sequence of linear regression
models that gradually adds more and more regressors. It is called series
estimation and includes polynomial regression and harmonic regression.

10There is no need to regress Y on X2 since M2 is idempotent.
11“Sieve” is pronounced /sív/, not /sí:v/.
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(2) Global nonlinear approach. The method that uses an expanding (usually
nested) sequence of nonlinear regression models that become more and more
flexible. For example, neural networks and random forests fall into this cat-
egory.

(3) Local approach. The method that uses only some neighboring observations to
approximate E[y | x] locally. Examples include local linear regression, spline
regression, kernel regression, and k-nearest neighbor regression.

In all of these methods, it is crucial to avoid overfitting in finite samples while
ensuring that the model saturates asymptotically. The parameters that control the
flexibility of the model are called the tuning parameters and should be carefully ad-
justed as the sample size increases. Some methods have a data-driven way of pick-
ing the tuning parameters, but there is always some degree of arbitrariness in their
choices. The problem of fine-tuning is especially pronounced in advanced machine
learning methods.

In causal inference, nonparametric regression is not used as often as it can be.
Part of the reason may be a communication issue. If we have many conditioning
variables, it is not obvious how to best present a nonlinear function of them and what
to conclude with it. In contrast, parsimonious linear regression can be reported as a
familiar table and usually gives one number β̂1 that is the most relevant in drawing
conclusions from the analysis. On the other hand, if prediction is concerned, there
is no issue related to interpretability, so nonparametric regression is a popular and
powerful choice.

7.A. Navigating Through the Regression Tables

To illustrate the practical flow of linear regression, let us take Example 7.4. The
data is given as a frequency table in Table 7.1. To run regression, we first transform
this into 24 observations with variables Admittedi, Malei, Majori, and ni, where ni

represents the number of applicants for each major and gender. This is still a collapsed
dataset, so we use the WLS with frequency weighting (Section 7.3). In Stata, the
regression (second specification) is done with the command

reg admit male i.maj [fweight=n], vce(r)
where the option vce(r) specifies the heteroskedasticity-robust standard error with
small-sample correction (V̂ in Section 7.2.4).

Table 7.2 is the regression output. The upper right corner has five numbers.
Number of obs is the sample size n. F(6, 4519) is the F -statistic for the joint
hypothesis that all but the intercept coefficients are zero; the numbers 6 and 4519 are
the degrees of freedom, r and n−k. Prob > F is the p-value for the same hypothesis,
using the F distribution; the fact that this is small indicates that the regressors have
strong predictive abilities for y. R-squared is the (unadjusted) R2; this is small, so
there is still much variation of y that is not explained by the regressors.12 Root MSE

12A terrible goodness-of-fit measure is a common observation for binary dependent variables.
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Table 7.1. Admission data for Example 7.4 [FPP07, p. 18].

Male Female
Number of Percent Number of Percent

Major applicants admitted applicants admitted

A 825 62 108 82
B 560 63 25 68
C 325 37 593 34
D 417 33 375 35
E 191 28 393 24
F 373 6 341 7

Table 7.2. Stata’s reg output for the second regression in Exam-
ple 7.4.

Linear regression Number of obs = 4,526
F(6, 4519) = 240.47
Prob > F = 0.0000
R-squared = 0.1724
Root MSE = .44361

------------------------------------------------------------------------------
| Robust

admit | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

male | -.0184252 .0147571 -1.25 0.212 -.0473563 .0105059
|

maj |
B | -.0103346 .0254036 -0.41 0.684 -.0601381 .0394689
C | -.3031654 .0234421 -12.93 0.000 -.3491234 -.2572074
D | -.3111034 .0234469 -13.27 0.000 -.3570708 -.265136
E | -.4027126 .0251705 -16.00 0.000 -.4520591 -.3533661
F | -.5863997 .0187201 -31.32 0.000 -.6231002 -.5496993

|
_cons | .660451 .0200397 32.96 0.000 .6211634 .6997386

------------------------------------------------------------------------------

is the square root of Ê[ε2
i ] = 1

n−k

∑
ε̂2

i ; this shows the unexplained variation in the
units of y while R2 is a unitless measure.

In the table below, the first column lists the dependent variable and the regressors;
_cons is the intercept term. The second column shows each estimate of βj. The third
column shows the heteroskedasticity-robust marginal standard error of each β̂j. The
fourth column gives the t-statistic for the hypothesis that each βj is zero; this is simply
the estimate divided by the standard error. The fifth column gives the p-value for
this hypothesis, using the t distribution. The sixth and seventh columns provide the
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Table 7.3. Regression estimates of two specifications in Example 7.4.

(1) (2)
Admitted Admitted

Male 0.142*** −0.0184
( 0.0144) ( 0.0148)

Major B −0.0103
( 0.0254)

Major C −0.303***
( 0.0234)

Major D −0.311***
( 0.0234)

Major E −0.403***
( 0.0252)

Major F −0.586***
( 0.0187)

Constant 0.304*** 0.660***
( 0.0107) ( 0.0200)

N 4,526 4,526
R̄2 0.020 0.171
F 96.89 240.5

Heteroskedasticity-robust standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
There are six majors labeled through A to F, and the base category is chosen to be A.

95% confidence interval for each coefficient. Note that the fourth to seventh columns
can be recovered from the knowledge of the second and third columns.

Table 7.3 is an example of the regression table often shown in a paper. The first
column usually lists the regressors; at the bottom, various other information such
as the sample size (typically denoted by N), the adjusted R2, or the F statistic is
provided. The second and third columns respectively constitute separate regression
specifications. The second column, labeled as (1), uses only the intercept and gender
as the regressors, while the third column, (2), includes the major dummies. The stars
next to the coefficients are explained at the bottom of the table; for this example,
* indicates significance at 5%, ** at 1%, and *** at 0.1%. Be careful that more
and more journals are starting to employ the policy that the stars should not be
placed in the table. The numbers in the parentheses below the estimates are the
robust standard errors; in some cases, the t-statistics or the p-values are shown in the
parentheses. Some authors do not list all the regressors in the table, especially when
the regression equation contains hundreds of regressors.



CHAPTER 8

Logistic Regression

Choose well. Your choice is
brief, and yet endless.

the mason lodge, Johann
von Goethe, translated by

thomas carlyle, 1827

When the dependent variable is categorical, a direct application of some regression
methods may not make much sense. The methods that are specifically designed to
handle this case are called classification. In economics, this situation arises frequently
when we want to explain how humans make decisions. The decision of “whether to
buy something” or “which school to attend” is of categorical nature, and we aim to
explain it with a variety of economic observations such as gender, age, and income.
The “whether” problems are called the binary choice models (or the binary regression)
and “which” problems are called the multiple choice models (or the multinomial re-
gression). They are collectively called the discrete choice models. The word “choice”
may be replaced with “response.”

Note that the classification problem is not any different from the regression prob-
lem when the set of regressors is also discrete. For example, when we want to explain
a decision of purchasing seasonings yi by gender xi, we can saturate the model with

yi = β0 + β1xi + εi

without any loss of generality. Here, β0 = P (yi = 1 | xi = 0) and β1 − β0 = P (yi =
1 | xi = 1), representing a complete description of the conditional distribution of yi

given xi.
The linear form becomes problematic when the model is not saturated. For ex-

ample, if we want to explain the purchase yi by income zi, the regression
yi = β0 + β1zi + εi

is not without consequences. Is it reasonable to expect a linear relation between a
bounded variable yi and an unbounded variable zi? Classification methods deal with
this inherent nonlinearity.

8.1. Logistics of the Logistic Regression

The logistic regression is one of the most basic classification methods that has nice
analogies with linear regression. When the dependent variable is binary, it is called
the binomial logistic regression; when the dependent variable takes more than two

103
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(unordered) categories, the multinomial logistic regression. Let us first consider the
binary case. The logistic regression specifies the relation between y and x as

log P (y = 1 | x)
P (y = 0 | x) = log P (y = 1 | x)

1 − P (y = 1 | x) = x′β.

The left-hand side is called the log-odds ratio, and the function p 7→ log p
1−p

is called
the logit function. The log-odds ratio is a way to map the probability in the scale of
(0, 1) to a real number in the scale of (−∞,∞). The “logistic” part of the logistic
regression comes from the shape of P (y = 1 | x); inverting the logit function reveals

P (y = 1 | x) = 1
1 + e−x′β

= Λ(x′β),

where Λ is the cdf of the standard logistic distribution Logistic(0, 1).1
Estimation of the logistic regression is usually done with MLE. Note that the

conditional likelihood of y given x is fully specified as Λ(x′β)y[1 − Λ(x′β)]1−y. Thus,
the conditional log likelihood for one observation (x, y) is given by2

ℓβ(y | x) = y log Λ(x′β) + (1 − y) log(1 − Λ(x′β)),

which yields the score and Hessian

ℓ̇β(y | x) = x[y − Λ(x′β)], ℓ̈β(y | x) = −Λ(x′β)[1 − Λ(x′β)]xx′.

The parameter β can be estimated by maximizing the sample conditional log likeli-
hood,

β̂ = arg max
b∈Rk

n∑
i=1

ℓb(yi | xi).

While we cannot write down a closed-form solution to this, we know from Theorem 6.3
that, under correct specification,

√
n(β̂ − β)⇝ N(0, I−1

β ),

where Iβ is the Fisher information matrix Iβ = E[ℓ̇β(yi, xi)ℓ̇β(yi, xi)′]. In many appli-
cations in social science, however, correct specification is not a sensible assumption.
Therefore, the use of the “robust” variance E[ℓ̈β(yi, xi)]−1IβE[ℓ̈β(yi, xi)]−1, where

E[ℓ̈β(yi, xi)] = −E[Λ(x′β)[1 − Λ(x′β)]xx′],
Iβ = E[Var(y | x)xx′] + E[[P (y | x) − Λ(x′β)]2xx′],

is recommended (Section 6.4). In Stata, this corresponds to specifying the robust
variance option: logit y x, vce(r).

Exercise 8.1. Verify that the asymptotic variance formula in Theorem 6.6 reduces
to the above expression.

1Note that the variance of the “standard” logistic distribution is π2/3, not 1.
2Usually, the marginal density of x is assumed to not depend on the parameter, so it is irrelevant

to maximization. In that case, it suffices to maximize the conditional likelihood (Remark 6.2).
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Table 8.1. Bankruptcy prediction with financial statements [Ohl80,
Table 4].

Variable
SIZE TLTA WCTA CLCA NITA FUTL INTWO OENEG CHIN Const

β̂ −0.41* 6.03* −1.43 0.08 −2.37 −1.83* 0.29 −1.72* −0.52* −1.32
SE (0.11) (0.91) (0.76) (0.10) (1.28) (0.78) (0.35) (0.70) (0.24) (1.36)

0
0

β0

β1

E[y | x] = β0 + β1x

(a) Linear regression approximates the
conditional expectation by a linear func-
tion.

β1

4

P (y = 1 | x) = Λ(β0 + β1x)

0 −β0

β1

0

1
1+e−β0

1
2

1

(b) Logistic regression approximates the
conditional probability (which is equal to
the conditional expectation for a binary
variable) by a logistic function.

Figure 8.1. Linear and logistic regressions.

Example 8.1 (Prediction of bankruptcy). Accurately predicting the probability of
a firm’s bankruptcy is an important component of a loan approval decision for banks
and investors. [Ohl80] examines the predictive power of various ratios in the financial
statements. He considers nine quantities that might be indicative of default, including
SIZE = log(total assets/GNP price-level index), TLTA = Total liabilities divided by
total assets, and OENEG = 1{total liabilities exceed total assets}. The logistic
regression of the indicator of bankruptcy within one year on the nine regressors and
an intercept finds that five coefficients are marginally statistically significant.

8.2. Analogy and Contrast to Linear Regression

Figure 8.1 compares the logistic regression with the linear regression. Both approx-
imates the conditional expectation of y given x, E[y | x] by a prespecified functional
form. When y is binary, then the conditional expectation is equal to the conditional
probability since

E[y | x] = E[1{y = 1} | x] = P (y = 1 | x).
Since the probability is bounded by 0 and 1, the logistic regression fits a bounded
function. The coefficient β1 moves the slope of both curves and β0 shifts the inter-
cept. However, the slope of the fitted function changes depending on xi, so the naive
interpretation of β1 as the overall average change of y in response to x does not hold.
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y = 1

y = 0
β0 + β1x

P (y∗ ≥ 0 | x)

x

y∗

Figure 8.2. Latent outcome variable interpretation. The latent out-
come y∗ follows a logistic distribution centered at β0 + β1x, and thus
P (y∗ ≥ 0 | x) is given by a logistic distribution function.

For each x, we need to calculate the slope of the function to find out the partial effect
of x on P (y = 1 | x).

Just like linear regression, we can add more than one regressor as well as their
higher-order polynomial terms to make the functional form more flexible. Therefore,
the logistic regression by no means forces a logistic relation between y and x; rather,
it only uses a logistic relation between y and β. It may feel like logistic regression
imposes more assumptions on the model as it can be estimated with MLE, but this is
primarily because it exploits the binary aspect of the dependent variable (Section 8.6).
Logistic regression shares the same flexibility as linear regression in designing the
regressors.

8.3. Interpretations of the Logistic Regression Model

There are several data-generating processes that give rise to logistic regression.

8.3.1. Latent outcome variable. Suppose that there is a latent continuous
outcome y∗

i for which the following equation holds
y∗

i = x′
iβ + ε∗

i , ε∗
i | xi ∼ Logistic(0, 1).

What we observe instead of y∗
i is the indicator of its positivity, that is, yi = 1{y∗

i ≥ 0}
(Figure 8.2). In this case, the conditional distribution of yi is given by

P (yi = 1 | xi) = Λ(x′
iβ).

In economics, for example, when the health status of an individual is only mea-
sured as healthy or unhealthy, we can think that there is an underlying continuous
health status y∗

i that is unobservable to us, and an individual responds as healthy
only when her health status is above 0. This imposes an assumption that the under-
lying health status is distributed as a logistic distribution conditional on observable
characteristics xi.

8.3.2. Two-way latent outcome variable. Suppose that there are two latent
continuous outcome variables y0∗

i and y1∗
i such that

yj∗
i = x′

iγ
j + εj∗

i
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xγ0
0 + γ0

1x

y0∗

(a) y0∗ = x′γ0 + ε0∗.

x

γ1
0 + γ1

1x

y1∗

(b) y1∗ = x′γ1 + ε1∗.

Figure 8.3. Two-way latent outcome variable interpretation. The
terms εj∗ follow a maximum Gumbel distribution. Then, the probabil-
ity that y1∗ > y0∗ is given by a logistic distribution function.

where ε0∗
i and ε1∗

i are mutually independent conditional on xi and have the same
standard type I extreme value distribution conditional on xi. A standard type I ex-
treme value distribution has a pdf of either pε∗(z) = e−ze−e−z (maximum Gumbel) or
pε∗(z) = eze−ez (minimum Gumbel).3 Instead of y0∗

i and y1∗
i , we observe the indica-

tor of their maximum, yi = 1{y1∗
i > y0∗

i } (Figure 8.3). In this case, the conditional
distribution of yi given xi turns out to be

P (yi = 1 | xi) = Λ(x′
i(γ1 − γ0)).

Note that the two latent error terms are not distributed as a logistic distribution.
They follow an extreme value distribution, but their difference gives rise to a logistic
regression. Also, each γ is not identified; rather, their difference β = γ1 − γ0 is.

When we think of a consumer’s decision to purchase a good, we can think that the
latent utilities of purchasing and not purchasing follow an extreme value distribution
conditional on observable characteristics xi. In this case, the observed purchasing
behavior is exactly modeled as the logistic regression.

By allowing more than two latent variables to choose the maximum from, we can
naturally generalize this to multinomial logistic models (Section 8.7), which is often
used in multiple choice models in economics.

8.3.3. Classification of two normals. Suppose that there are samples from
two normal distributions with equal variance, x1∗

i ∼ N(µ1,Σ) =: N1 and x0∗
i ∼

N(µ0,Σ) =: N0. They are both observed but not labeled. Then, given a value xi,
the best guess about which distribution it came from takes the form of a logistic
regression (Figure 8.4). In particular, let λ be the proportion of the sample from N1.
Define yi = 1 if xi is from N1 and yi = 0 if xi is from N0. The optimal classifier of xi

3The variance of a standard type I extreme value distribution is π2/6, not 1.
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N0 N1

1

P (y = 1 | x)

x

Figure 8.4. Classification of two normals interpretation. The sample
consists of the same numbers of observations from N0 and N1 (λ = 1/2).
Given a value x, the probability that it is drawn from N1 is expressed
as a logistic distribution function.

given yi is equal to the conditional distribution of yi given xi, that is,

P (y = 1 | x) = λpx|y=1(x)
(1 − λ)px|y=0(x) + λpx|y=1(x)

= 1
1 + 1−λ

λ
exp(−x′Σ−1(µ1 − µ0) − 1

2(µ′
0Σ−1µ0 − µ′

1Σ−1µ1))
= Λ(z′β),

where
z =

[
1
x

]
, β =

[
log λ

1−λ
+ 1

2(µ′
0Σ−1µ0 − µ′

1Σ−1µ1)
Σ−1(µ1 − µ0)

]
.

If the two normal distributions have possibly different variances, the optimal classifier
takes the form of a logistic regression with regressors 1, x, and vech(xx′). This
interpretation also generalizes to multinomial logistic models by considering more
than two distributions to draw the sample from (Section 8.7).

Exercise 8.2. Derive the explicit expression of P (y = 1 | x) for the classification
of two normal distributions with distinct nonsingular variances as well as distinct
means.

Remark 8.1. More generally, the optimal classifier for arbitrary exponential family
distributions is given as the (possibly nonlinear) logistic regression with the regressors
being the sufficient statistics of the candidate distributions.

Remark 8.2. Technically speaking, the marginal distribution of x depends on β in
this model, so maximizing the conditional likelihood of y given x is not efficient in
the literal interpretation of this setup. See [HLS13, Section 1.5].

8.3.4. Neural network classifier. As in Section 8.3.3, a classifier is a function
that takes xi and computes the probability of yi = 1 conditional on xi. A neural net-
work classifier gives the classifier function as the nested compositions of single-index
functions in the following sense. Given an input vector x, consider the transformed
variable z1 = σ(x′w1) with some weight vector w1 and a univariate function σ called
the activation function. We can create more transformations z2, . . . , zk for different
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(a) For monotonic and balanced data,
the linear and logistic regressions give
similar predictions. The blue line is the
linear regression y = β0 + β1x + ε, and
the red line the logistic regression P (y =
1 | x) = Λ(β0 + β1x).
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(b) For nonmonotonic or imbalanced
data, the linear and logistic regressions
give different predictions. The blue line is
the linear regression y = β0+β1x+β2x

2+
ε, and the red line the logistic regression
P (y = 1 | x) = Λ(β0 + β1x+ β2x

2).

Figure 8.5. Difference of the LPM and logistic regression.

weights w2, . . . , wk but usually with the same activation function. These variables
z1, . . . , zk constitute the output of the first layer called a hidden layer. Then, having
z as the new input, we can consider the further transformations of the same type.
After some iterations, we then compute the final output by Λ(z̃′w) where Λ is the cdf
of the logistic distribution and w a weight vector. Thus, a neural network consists
of the initial input layer, several hidden layers, and the final output. The cdf of the
logistic distribution is called the sigmoid function in this context, and the activation
functions for the hidden layers may also be taken as the sigmoid function.

Logistic regression can then be interpreted as the neural network classifier with no
hidden layer. That is, given the input vector x, we directly compute the final output
as Λ(x′β).

8.4. Relation to the Linear Probability Model

Even when the dependent variable is binary, we can still run the linear regression
of y on x since the linear regression is always well defined (Section 7.1.2). This is
called the linear probability model (LPM). That is, even when the linear regression
line may not make sense as the conditional probability of y = 1 given x, it still does
as the best linear approximation to it in the sense of the mean squared error. In many
situations the linear probability model is clearly misspecified (e.g., when the support
of x is unbounded), but for that matter, any model is misspecified to some extent.
Linear regression may give us predictions outside of 0 and 1, but in turn enjoys
unequivocal interpretability, ease of comparison across studies, and familiarity to
many practitioners. For this reason, some authors prefer to use the linear probability
model even when the outcome variable is binary. In fact, it is a common observation
in practice that the partial effect estimates using the logistic regression and the linear
regression coincide to a good degree. This is especially so when the numbers of yi = 1
and yi = 0 are of a comparable order (Figure 8.5a). See also [AP09, Section 3.4.2]
for this matter.
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However, when there is severe imbalance in the numbers of observations of differ-
ent categories (for example, customers’ purchase indicators of products on Amazon
consist mostly of zeros, and so do the default indicators of credit cards), the linear
probability model can fail miserably. Also, when the conditional probability function
is not monotonic, linear and logistic regressions tend to yield very different results
(Figure 8.5b). In these cases, models that take into account the bounded property of
y and interpolate the data with a nice smooth curve would prove much more useful.

Also, when the dependent variable is multinomial, the linear regression is consid-
ered a terrible practice. Linear regression forces us to place the categories on a real
line, which simply does not make sense in many cases. For example, consider a mover
company that develops a web system that provides a plan recommendation for cus-
tomers in response to the inputs such as locations and how much furniture they have
to move. Different plans may be tailored for different types of customers in various
dimensions, and cannot simply be assigned a number that changes linearly with the
customers’ diverse characteristics. In such cases, logistic regression (or probably a
more sophisticated machine learning method) would be a better option.

8.5. Relation to the Probit Model

In addition to adding regressors, another way to make the method more flexible is
to use a function other than Λ. In general, the function that connects the conditional
probability of y to the index x′β is called the link function, and it is for us to choose.
For example, we can set the link function to be the standard normal cdf,

P (y = 1 | x) = Φ(x′β),

in which case the model is called the probit model. This has a similar interpretation
as Section 8.3.1 when ε∗

i | xi follows a standard normal distribution.
When the binary outcome is concerned, the probit model seems to win the pop-

ularity vote in economics over the logistic regression (also known as the logit model
there), probably because the normal latent outcome interpretation is easy to conceive.
In statistics and computer science, however, logistic regression has acquired the po-
sition of the canonical (most basic) classification method. In fact, logistic regression
has many advantages over the probit model. First, it admits a closed-form likeli-
hood as the cdf of a logistic distribution has a closed-form expression. Second, it has
various interpretations that speak to diverse practitioners (Section 8.3), and for that
matter, it also relates to the normal distribution in a neat way (Section 8.3.3). Third,
it naturally extends to multinomial responses in an interpretable way (Section 8.7).
For this last reason, when it comes to multiple choice models, multinomial logistic
regression is the go-to method in economics as well.4

Remark 8.3. It is known that there is almost a one-to-one relationship between the
coefficients of the logit and the probit models; the logit β is roughly equal to 1.6 to

4There is a multinomial extension of the probit model [BAL85, Section 5.7], but it is compu-
tationally intensive or intractable.
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Figure 8.6. Logit and probit models. Multiplying π/
√

3 to the coeffi-
cients makes the probit model very close to the logit. This corresponds
to equating the variance of the latent error terms.

1.7 times the probit β [Gre18, Chapter 17]. This is mainly due to the difference in
the variances of the standard logistic and standard normal distributions (Figure 8.6).

8.6. Is There “Heteroskedasticity?”

In the latent outcome interpretation (Section 8.3.1), the distribution of the “error
term” ε∗

i —let alone its variance—does not depend on xi. Does this mean that the
logistic regression is “confined” to a homoskedastic framework? In fact, this is a false
analogy with the linear regression when it comes to heteroskedasticity.

Suppose that there is a “true” latent outcome y∗ that is heteroskedastic, i.e., y∗ =
g(x) + ε∗ and ε∗ | x follows a varying distribution that depends on x (Figure 8.7a).
This induces a conditional probability function on the observed outcome y through
P (y = 1 | x) = P (y∗ ≥ 0 | x) (Figure 8.7b). This in turn gives rise to an alternative
latent outcome ỹ∗ such that ỹ∗ = g̃(x) + ε̃∗ for ε̃∗ | x ∼ Logistic(0, 1) and P (ỹ∗ ≥
0 | x) = P (y = 1 | x) (Figure 8.7c). Therefore, as long as the log-odds ratio x′β
is modeled flexibly enough to approximate g̃ well, there is no loss of generality in
modeling the logistic latent error. In a nutshell, the latent outcome is not doomed
to be equivariant, but to our advantage can be deemed so. It is only when we try to
directly interpret β in the context of the structural model (such as welfare analysis)
that the distributional assumption becomes material and entails loss of generality.5

Additionally, since y is a binary variable, the error term of the observed outcome
ε = y−P (y = 1 | x) is a demeaned Bernoulli variable, so there is no “flexibility” in the
distribution of ε and heteroskedasticity is a necessity. In particular, the variance of a
Bernoulli random variable with probability p is given by p(1 − p), so the conditional
variance of y given x is a deterministic function of the conditional mean, namely,
P (y = 1 | x)[1 −P (y = 1 | x)] (Figure 8.7b). The logistic regression does not need to

5Since utility is ordinal, the distributional assumption is innocuous at the individual level even
with a structural interpretation [BAL85, Section 4.1]. However, if we aggregate utilities over dif-
ferent individuals, it imposes an assumption on their comparability. This interpretational issue is a
chronic problem of structural models, and the LPM is not free of it either.
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Figure 8.7. “True” latent outcome y∗ may be heteroskedastic, but
there exists a “deemed” latent outcome ỹ∗ with a standard logistic error
that induces the same conditional probability function on the observed
outcome y, i.e., P (y = 1 | x) = P (y∗ ≥ 0 | x) = P (ỹ∗ ≥ 0 | x). In this
sense, the distributional assumption on the latent error is innocuous.
Conditional heteroskedasticity of y is then determined solely by the
conditional probability function (green dashed line plots

√
Var(y | x)).

explicitly take this heteroskedasticity into account since the conditional likelihood of
y accounts for the entire probabilistic structure of the Bernoulli process, not only the
heteroskedasticity. Of course, the use of the robust standard error is recommended
(Section 8.1), but this is to robustify the inference against misspecification, not against
heteroskedasticity.

Meanwhile, if we go with the linear probability model, the use of a heteroskedas-
ticity-robust standard error is a must, regardless of the presence of misspecification.
Linear regression remains agnostic on the specificity of the binary outcome and al-
lows much flexibility in the error distribution—in this case it just happens to be
vacuous—so we need to explicitly account for the heteroskedasticity in the standard
error calculation.

8.7. Multinomial Logistic Regression

When y takes on more than two categories, it is important to distinguish two
types of categories. The nominal categories are not associated in a particular order,
e.g., States, colors, and products sold at a supermarket. The ordinal categories are
ordered in a meaningful way, e.g., ratings on Yelp, course grades, and clothing sizes.6
The extension of logistic regression for nominal y is called the multinomial logistic
regression,7 and the extension for ordinal y is called the ordinal (or ordered) logistic
regression. This section gives an introduction to the simpler one, multinomial logis-
tic regression. For ordinal logistic regression, see [HLS13, Chapter 8] or [Woo10,
Chapter IV]. See also [BAL85, Chapter 10] for other kinds of logistic regression
models.

6Of course, there are cases where there is only a meaningful partial order, as in job titles.
7Not to be confused with multivariate logistic regression, which simply is a binomial logistic

regression with multiple regressors.
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Figure 8.8. Multinomial logistic model.

Suppose that y takes on m categories labeled {0, 1, . . . ,m − 1}. Multinomial
logistic regression models the relation of y and x by

log P (y = ℓ | x)
P (y = 0 | x) = x′βℓ

for each ℓ = 1, . . . ,m− 1. Note that there is a separate set of coefficients βℓ for each
category except for 0, so the total number of coefficients is k(m − 1). Solving the
system of log-odds ratios yields

P (y = 0 | x) = 1
1 +∑m−1

l=1 e−x′βl , P (y = ℓ | x) = e−x′βℓ

1 +∑m−1
l=1 e−x′βl .

Again, β can be estimated by maximizing the conditional log likelihood.
The generalization of the two-way latent outcome variables interpretation in Sec-

tion 8.3.2 is a handy way to interpret this model (Figure 8.8a). Suppose that there
are m latent outcomes y0∗

i , . . . , y
(m−1)∗
i , each of which is generated as

yℓ∗
i = x′

iγ
ℓ + εℓ∗

i , εℓ∗
i | xi ∼ EV1(0, 1).

We observe the index of the maximum of y0∗
i , . . . , y

(m−1)∗
i , that is, yi = arg maxℓ y

ℓ∗
i .

With this, the conditional probability of yi given xi becomes

P (yi = ℓ | xi) = e−x′(γℓ−γ0)

1 +∑m−1
l=1 e−x′(γl−γ0) ,

which coincides with the above modeling through βℓ = γℓ − γ0.
This interpretation nicely fits the multiple choice models in economics. When a

consumer has a multiple set of choices, the consumer chooses the one that maximizes
her utility. If the utility from each choice is given as a random variable distributed
as a type I extreme value distribution centered at some function of the observed
characteristics, then her utility function can be estimated by the multinomial logistic
regression, which, for example, enables welfare analysis [WF94]. Unlike the binary
outcome case, however, the assumption of independent logistic errors is not without
loss of generality; the logistic multiple choice model is known to satisfy the axiom of
“independence from irrelevant alternatives (IIA),” which simplifies the analysis but
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sometimes leads to paradoxical behaviors [BAL85, Section 5.3]. [MM15] justify the
use of multinomial logistic regression for multiple choice models based on rational
inattention. In the context of revenue management, the logit choice model admits an
efficient algorithm to optimize assortment [TvR04, Proposition 6].

We can also interpret the multinomial logit model through the classification of
multiple normal distributions in the same spirit as Section 8.3.3 (Figure 8.8b). Let
p0, . . . , pm−1 be m pdfs from which an observation is drawn randomly with respective
probabilities λ0, . . . , λm−1. Let y = ℓ if x comes from the pdf pℓ. The optimal classifier
for this model is then

P (y = ℓ | x) = λℓpℓ(x)
λ0p0(x) + · · · + λm−1pm−1(x) .

If we let each pℓ be a normal pdf with equal variance, we obtain the multinomial
logistic regression where β is determined by the means and variance of the normals.
It is straightforward to generalize it to arbitrary exponential family distributions.

8.8. Nonparametric Classification

Just like regression, classification can be considered in a nonparametric way. As
explained in Section 8.6, we can make the index x′β nonparametric to accommodate
all possible conditional probability functions. For example, we can add higher-order
polynomials or other transformations [HIR03]. More terms can be added as more
observations are available, so that in the limit we can “saturate” the model just as
in linear regression. Typical neural network classifiers can also be understood in this
framework. Usually, the output layer is given with the sigmoid activation function,
which corresponds to the link function arising from the logistic regression. Then the
function specified as the input to the last output layer (their activation function need
not be sigmoid) is the nonparametrically specified index function.

Another direction is to make the link function nonparametric while assuming that
the index part is known or at least parametrically specified. This corresponds to al-
lowing an arbitrary distribution for the latent error term ε∗ in the one-way latent
outcome interpretation (Section 8.3.1). [KS93] consider a semiparametrically effi-
cient estimator for this model. Note that, unlike making the index nonparametric,
this “semiparametrization” cannot accommodate all possible conditional probability
functions. However, when we have a strong reason to believe that the index specifica-
tion is known up to a finite-dimensional parameter, this model can recover the “true”
latent outcome model that can then be used for further structural analyses.

We can think of classification in the framework other than MLE. In the machine
learning literature, random forests and support-vector machine are popularly used
for nonparametric classification problems. Also, the Wasserstein loss is frequently
used to train a neural network classifier for generative adversarial networks (GAN)
to avoid problems arising from the disjoint supports of high-dimensional datasets.



CHAPTER 9

Principles of Causal Inference

Random number generation is
too important to be left to
chance.

Robert Coveyou, 1969

9.1. Correlation Does Not Imply Causation?

An economist may want to know how provision of health care improves the mental
health of an individual. A corporate finance researcher may want to examine how
the capital structure influences firm investments. A student of accounting may want
to inquire how the International Financial Reporting Standards affect liquidity. A
marketer may want to quantify how much a dollar spent on an ad increases sales. A
government agency may want to investigate how the selective advertising by Facebook
alters voters’ behaviors.

These questions are causal in nature; they all concern how one thing leads to
another. This is more than a correlation. Simply finding that individuals with health
care tend to have better mental health does not mean that health care improved their
mental health; it may just be that those with better mental health tend to choose
to get health care. This problem is encapsulated in the famous saying: “Correlation
does not imply causation.” In social science, “everything correlates to some extent
with everything else” [Mee90].

However, as statistics being a practical application of probability theory, all that
statistics can handle is correlation. There is no Stata command that says “cause y
x” and gets you a causal effect. Does this mean that statistics is helpless and we

Figure 9.1. https://xkcd.com/552
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never get to causality? The answer is fortunately no—under certain conditions, a
certain kind of correlation can be interpreted as causation.1 The branch of statistics
that studies it is known as causal inference and program evaluation.

In general, there are three approaches to scientific inquiry of causality.
(1) A deductive approach aims to uncover the causal chain of reactions. A neu-

roeconomic research on how decisions are made in our brains is primarily
deductive.

(2) An inductive approach aims to statistically discover causality while remaining
agnostic on the underlying chain of reactions. Reduced-form modeling is
primarily inductive.

(3) An abductive approach hypothesizes the chain of reactions and examines
counterfactual scenarios under the postulated hypothesis. Structural model-
ing is primarily abductive.2

In this chapter, we discuss principles of the inductive approach to causality. For
further reading, I recommend [Pea09, MW14, IR15, HR20].

9.2. The Inductive Model of Causality

We first need to define causality. Let us look at an example of drug evaluation. If
you are to define what it means for the drug to be effective in curing some disease,
you may think of something like this: the drug contains these molecules, and when
taken orally, they are absorbed into this organ, and the organ reacts such and such.
While this is a totally fine way to define causality, this is not the only way to define
it. Surprisingly, we can define the causal effect of the drug without any knowledge
about biology or medicine.

Consider the following thought experiment. Suppose there are two parallel worlds,
A and B. These worlds are very much like each other; in fact, there is one and only
one difference between the two. In world A, a patient does not take this drug; in
world B, the same patient does take this drug. That’s it. Everything else, even the
perception of the patient, is the same across the two, so if the patient “thinks” that
he is taking the new drug in world B, so does he in world A. After a while, we observe
the health status of this patient in both worlds. If the patient’s disease is cured in B
but not in A, we can attribute it to the drug, for that was the only difference that
distinguished the two parallel worlds to begin with.

The advantage of this definition is that there is no need to know how the drug
helped cure the disease. This is in fact a major advantage in social science because
the specific mechanism by which one thing leads to another is hardly known for sure.
The disadvantage is that there are no two parallel worlds for us to compare, and this
is where statistics comes into play. While it is certainly not possible to replicate our

1For this, I prefer saying “Correlation does not always imply causation”—as we will see, some
correlations do.

2Obviously, the given examples are an oversimplification; estimation of neural signals in neu-
roeconomics is inductive; imposing an exclusion restriction in reduced-form modeling is abductive;
economic theory that endorses structural modeling is deductive.
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world and create a situation in which “everything else” is the same, it is possible to
replicate the situation in which the “probability distribution of everything else” is the
same. Say that you generate a Bernoulli random variable on your laptop. It is by
construction independent of anything else in the world; the conditional distribution
of everything else given the outcome of your Bernoulli variable—be it 0 or 1—is the
same as the marginal distribution of everything else (Exercise 2.15). Therefore, if
you assign the drug depending on the outcome of the Bernoulli variable and do not
let any other thing depend on it (e.g., you don’t tell which drug was assigned to the
patient or even to the doctor), you can create a situation in which the “distribution
of everything else” is the same for either drug assignment.

Of course, we cannot observe both outcomes with and without the drug for one
patient. However, as far as the average effect of the drug is concerned, this poses no
problem. The average outcome of the drug for a population can be estimated by the
average outcome of the drug for a randomly chosen subset of the population and its
convergence is very fast. Combined with the similarly estimated average outcome of
not taking the drug, we can estimate the average causal effect of the drug by taking
their difference.

Thus, the key to causal inference is to find the variation that is independent of
the causal chain in question. As discussed above, the easiest method to find such
a variation is to generate one yourself. This is called the (controlled) experiment or
the randomized controlled trial (RCT). In social science, however, it is not always
possible to run an experiment, for reasons such as costs or ethics. Even then, we can
sometimes find an exogenous variation in observational data as if an experiment took
place. Such cases are called the quasi-experiments or the natural experiments.

Finally, the word “random” in this context is often used to mean a probabilistic
variation that is independent of the causality in question. This is in contrast to our
use in earlier chapters as a synonym for “probabilistic.”

9.3. Causal Inference with Experimental Data

Let us introduce the notation. First, we denote a subject by i. In the health care
example, i refers to an individual; in the corporate finance example, it refers to a
firm. Whether the subject i is assigned the treatment is denoted by Xi, so Xi = 1
if i receives the treatment and Xi = 0 if not. The outcome in the scenario where
i receives the treatment is denoted by Yi1, and likewise Yi0 if i does not receive the
treatment. By all means, we observe only one of Yi1 and Yi0 for subject i; the actually
observed outcome is given by Yi = XiYi1 + (1 −Xi)Yi0. The difference Yi1 − Yi0 for a
specific subject i is called the individual treatment effect. The mean of it E[Yi1 − Yi0]
is the average treatment effect (ATE), which is our primary target.

9.3.1. Experiments with random treatment. When the treatment assign-
ment Xi can be set randomly, estimation of the causal effect is straightforward. Sup-
pose we run the following regression

Yi = β0 + β1Xi + εi.
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This equation can be understood as two equations:Yi0 = β0 + εi if Xi = 0,
Yi1 = β0 + β1 + εi if Xi = 1.

This implies that β0 = E[Yi0] and β1 = E[Yi1] − E[Yi0]. Ergo, the OLS coefficient β̂1
estimates the ATE.

Note that including other regressors that are uncorrelated with Xi in the equa-
tion does not change our target parameter. Recall the discussion right before Theo-
rem 7.11. First, the coefficient γ1 in the regression

Yi = γ0 + γ1Xi +W ′
iγ2 + εi

is the same as the coefficient γ1 in
Yi − E[Yi] = γ1(Xi − E[Xi]) + (Wi − E[Wi])′γ2 + εi.

Then, it is the same as γ1 in
MW (Yi − E[Yi]) = γ1MW (Xi − E[Xi]) + εi,

where MW (z) := z − (Wi − E[Wi])′ Var(Wi)−1 Cov(Wi, z). However, since Xi is inde-
pendent of Wi, we get Cov(Wi, Xi) = 0. So the equation reduces to

MW (Yi − E[Yi]) = γ1(Xi − E[Xi]) + εi.

Therefore,

γ1 = E[(Xi − E[Xi])MW (Yi − E[Yi])]
Var(Xi)

= E[(Xi − E[Xi])(Yi − E[Yi])]
Var(Xi)

since, again, Cov(Wi, Xi) = 0. This matches the formula for β1,

β1 = Cov(Xi, Yi)
Var(Xi)

.

However, their estimates are not numerically the same; if Wi is a set of relevant
variables for Yi, γ̂1 may be more precise than β̂1 since Wi absorbs variation of Yi not
attributable to Xi; if Wi is irrelevant, γ̂1 may be less precise since Wi takes away some
degrees of freedom.

Covariates can also be used to check the quality of randomization. If Xi is inde-
pendent of everything, the conditional distribution of Wi given Xi does not depend
on Xi. Therefore, we can test the quality of randomization by testing if the condi-
tional distribution of Wi is invariant of Xi (covariate balance). A popular choice is to
compare the mean and standard deviation of Wi across groups Xi = 1 and Xi = 0,
but other characteristics (or even the distribution itself) can also be used. We can
check the covariate balance right after randomization before applying the treatment.
If we detect severe imbalance due to “bad” randomization, we can randomize again.

Example 9.1 (Reaching for yield). In finance, reaching for yield refers to the be-
havior that an investor faced with a low average return tends to undertake high risk.
Some suspect that such a behavior has contributed to financial crisis. [LMW19]
carry out an experiment and investigate whether such a behavior exists in MBA
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Table 9.1. Covariate balance [LMW19, Table 1].

Treated Control Difference
N % N % % p-value

Gender Male 117 58.2 129 64.8 −6.7 0.17
Female 84 41.8 70 35.2 6.7

Risk tolerance High 116 57.7 107 53.8 3.9 0.55
Medium 48 23.9 56 28.1 −4.3
Low 37 18.4 36 18.1 0.3

Investment experience More 93 46.3 85 42.7 3.6 0.47
Limited 108 53.7 114 57.3 −3.6

Worked in finance Yes 84 41.8 86 43.2 −1.4 0.77
No 117 58.2 113 56.8 1.4

Total 201 199

Figure 9.2. Distributions of allocation to risky asset [LMW19, Fig-
ure 2].

students at Harvard Business School. The MBA students are asked to allocate a
hypothetical endowment of 1,000,000 Francs to the risk-free asset and the risky-asset.
They are randomly selected into two groups, A and B. Group A is presented with
the two assets: (1) the risk-free asset with 5% return with 0% risk and (2) the risky
asset with 10% return and 18% risk. Group B: (1) the risk-free asset with 1% return
with 0% risk and (2) the risky asset with 6% return and 18% risk. Thus, Group B
was exposed to a lower average return compared to A but with the same risk profile.
Table 9.1 checks the distribution of covariates across groups and lists p-values that
test the hypotheses of no difference using the Mann–Whitney U test. Figure 9.2
presents the density estimators of the distributions of the risky asset allocation (red
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Table 9.2. Reaching for yield experiment [LMW19, Table 2].

% risky allocation
(1) SE (2) SE

Low return 8.83* ( 2.82) 8.76* ( 2.75)

C
on

tr
ol
W

i


Male 6.25* ( 2.92)
Risk tolerance medium 5.56 ( 4.09)
Risk tolerance high 15.39* ( 3.84)
Investment experience 4.41 ( 3.45)
Worked in finance 3.34 ( 3.34)
Constant 66.79 55.81* ( 3.91)

N 400 400

for the control group and blue for the treatment group). The authors then run the
regression

RiskyAlloci = β0 + β1LowReturni + εi,

where RiskyAlloci is the percentage of allocation to the risky asset by an individual
i and LowReturni indicates whether i was in group B (Table 9.2 (1)). They find
that β̂ = 8.83 with the standard error 2.82, yielding a significant coefficient for the
reaching for yield estimate. They also estimate the regression including demographic
controls such as the risk tolerance level, investment experience, and work experience
in financial industry (Table 9.2 (2)). With that, reaching for yield is estimated more
precisely at 8.76 with standard error 2.75. This behavior does not arise from con-
ventional portfolio choice theory or institutional frictions, and they provide possible
mechanisms of investor psychology that can explain this such as reference dependence
and salience.

Example 9.2 (Therapeutic effects of intercessory prayer). Intercessory prayer is
widely believed to influence recovery from illness. [BDS+06] examine whether the
prayer itself or the knowledge thereof influences recovery. They took as the sub-
jects 1,802 patients who plan to undergo the coronary artery bypass graft (CABG)
surgery, which is susceptible to about 50% chance of complications and 5% of death.
They were randomly assigned to three groups: (1) those who were informed that
they would receive the prayer, and received the prayer, (2) those who were informed
that they may or may not receive the prayer, and received the prayer, and (3) those
who were informed that they may or may not receive the prayer, and did not re-
ceive the prayer. Thus, the difference between (1) and (2) reveals the causal effect
of acknowledging the prayer, and the difference between (2) and (3) the causal effect
of receiving the prayer (Figure 9.3). The outcome measure is whether the patient
suffers complications within 30 days of the surgery. They find that the complication
rates for the three groups were (1) 58.6%, (2) 52.2%, and (3) 50.9%. The estimated
ATE for acknowledging the prayer on the complication rate is 6.4% with the standard
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1,802 patients

601 patients
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Certain to
receive prayer

Uncertain but

receive prayer

Uncertain and not
receive prayer

Complication rate = 58.6%

Complication rate = 52.2%

Complication rate = 50.9%

Effect of acknowledging prayer

Effect of receiving prayer

Figure 9.3. Randomization into three groups and two treatment ef-
fects considered in [BDS+06].

error of 2.86% (significant with size 5%), and the ATE for receiving the prayer on the
complication rate is 1.2% with the standard error of 2.89% (insignificant).
Example 9.3 (Network effect). Humans are not good at making rational decisions
in a long horizon. For example, we may not think seriously enough about the elec-
tion of retirement benefits at an early stage of our career. [DS03] investigate whether
short-term monetary incentives can increase attendance to a fair and affect the choice
of retirement benefits. They designed a clever experiment to separately identify the
effects of incentives and of networks. For example, if we randomly distribute a small
reward to attend a fair to employees, some of the treated individuals may spread the
word. It may encourage those in the control group to attend the fair with them, or
it may discourage those to do so had they found out that they were not eligible for
the reward. To distinguish such effects from the effect of the rewards, they carried
out the experiment in two steps. First, they randomly classified 330 departments
in a university into two groups: 220 “treated” departments and 110 “control” de-
partments. Among the 4,168 employees in the treated departments, they randomly
sent out an invitation letter promising a $20 reward to 2,039 employees for attending
the fair. The remaining 2,129 employees in the treated departments and the 2,043
employees in the control departments did not receive the letter. Thus, the individ-
uals are classified into three groups: (1) those who are in the treated departments
and received the incentive, (2) those who are in the treated departments and did not
receive the incentive, and (3) those who are in the control departments and did not
receive the incentive (Figure 9.4). The difference between (1) and (2) identifies the
effect of receiving the incentive, and the difference between (2) and (3) the network
effect or the peer effect. The regression model is, therefore,

Yi = β0 + β1TreatedDepti + β2Treatedi + εi,

where TreatedDepti = 1 if i is in the treated department, and Treatedi = 1 if i
received the letter. Various outcomes are examined, including the fair attendance
and the Tax Deferred Account (TDA) enrollment within 4.5 months after the fair
(Table 9.3). For fair attendance, β̂1 and β̂2 were both statistically significant at 0.102
and 0.129; this is to say that being in the treated department increases the chance of
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330 departments

220 departments

110 departments

2,039 employees

2,129 employees

2,043 employees

Xi1 = 1

Xi1 = 0

Xi2 = 1

Xi2 = 0

Xi2 = 0

Incentive effect

Network effect

Figure 9.4. Two-step randomization in [DS03]. Xi1 = 1 indicates
that some employees in i’s department received the reward email; Xi2 =
1 that i received the reward email.

Table 9.3. Role of information and peer influence [DS03, Table II].

Outcome
TDA enrollment

Fair attendance after 4.5 months

Treated department 0.102* (0.014) 0.013* (0.005)
Treated 0.129* (0.023) −0.007 (0.006)

N 6,144 5,587

attending the fair by 10.2% compared to the employees in the control departments,
and receiving the reward further increases the chance by 12.9%. In relative terms,
the fair attendance was five times higher for (1) and three times higher for (2) than
for (3). For TDA enrollment, β̂1 was significantly positive at 0.013 while β̂2 was not
significant. Therefore, the word of mouth was effective in promoting TDA enrollment
but the monetary incentive was not. The authors then hypothesize what might have
been happening: (1) those who attended the fair spread information; (2) those who
attended the fair for incentives were different from those who attended the fair for
their colleagues; (3) receiving the reward reduced motivation.

9.3.2. Experiments with random eligibility. In many applications, it is not
possible to randomly assign the treatment. If an economist wants to evaluate a job
training program, it may be possible to randomly send an invitation to unemployed
individuals, but it is not possible to force someone to take the program if he is not
willing to. If a marketer wants to evaluate a new subscription plan, she will be able to
promote the plan to randomly selected customers but not force them to purchase it.
Thus, a common situation in social science is that eligibility to receive the treatment
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Subjects

Eligible

Ineligible

Compliers Never-takers

Compliers Never-takers

Xi = 1 Xi = 0Zi = 1

Zi = 0

Choose Xi

Xi = 0

Figure 9.5. Experiments with random eligibility. Since eligibility is
randomly assigned, the distribution of potential compliers and never-
takers among ineligible subjects is the same as the distribution of ob-
served compliers and never-takers among eligible subjects.

can be allotted randomly, while the decision to participate is left to the subject. Even
in that case, it is possible to estimate the causal effect of the treatment, albeit limited
to some subpopulation.

Let us introduce a variable Zi that indicates whether subject i is eligible to par-
ticipate in the treatment. In our setting, Zi is randomly assigned either 0 or 1. If
Zi = 1, subject i then chooses whether to participate Xi = 1 or not Xi = 0. If Zi = 0,
subject i has no option to participate, so Xi = 0 (Figure 9.5).

First, note that it is straightforward to estimate the causal effect of eligibility. If
we run the regression

Yi = α0 + α1Zi + εi,

the coefficient α1 = E[Yi | Zi = 1] − E[Yi | Zi = 0] estimates the average causal effect
of receiving the invitation to the treatment on the outcome, regardless of whether
they end up taking it. This is called the intent-to-treat (ITT) effect.

To understand how we can get to the causal effect of the treatment, it is helpful
to decompose ITT into two groups of subjects. Let us call the subjects who would
opt in to the program had they been eligible the compliers, and those who would opt
out the never-takers. Then, E[Yi | Zi = 1] can be decomposed as
E[Yi | Zi = 1] = P (complier)E[Yi | Zi = 1, complier]

+ P (never-taker)E[Yi | Zi = 1, never-taker]
= P (complier)E[Yi1 | complier] + P (never-taker)E[Yi0 | never-taker].

Here, I used the observation that Yi = Yi1 for compliers with Zi = 1, Yi = Yi0 for
never-takers with Zi = 1, and Zi was randomly assigned (so can be removed from
conditioning). For simplicity, let π := P (i is a complier). Then, ITT is the difference
of the following two quantities.

E[Yi | Zi = 1] = πE[Yi1 | complier] + (1 − π)E[Yi0 | never-taker],
E[Yi | Zi = 0] = πE[Yi0 | complier] + (1 − π)E[Yi0 | never-taker].
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Figure 9.6. Randomization in the BAM experiment [HSG+17].

That is, α1 = πE[Yi1 − Yi0 | complier]. In other words, ITT is the proportion of
compliers times the average treatment effect for compliers. This treatment effect,
β1 = E[Yi1 −Yi0 | complier], is called the local average treatment effect (LATE) as it is
local to the compliers. Note that π can be estimated by the proportion of compliers
in the eligible population in the data, that is, π̂ = ∑

Xi/
∑
Zi. With this, we can

estimate LATE by β̂1 = α̂1/π̂. This is specifically known as the Wald estimator, and
is a special case of the instrumental variable estimator (Section 9.5.2).

The reason why we can estimate the causal effect of the treatment, despite it
being not random, is that the treatment is effectively random for compliers. Since
compliers choose Xi = Zi and Zi is random, if we condition on the subpopulation of
compliers, it is as if the treatment was assigned randomly. However, for never-takers,
there is no treatment, let alone random treatment, so it is only natural that we can
estimate the treatment effect for compliers and only for compliers.

In general, there may be subjects who are not eligible for the treatment but make
their way into it by some means. In such cases, we need to take into account two
more groups. Those who would participate regardless of eligibility, Xi = 1, are called
the always-takers, and those who would participate only when they are not eligible,
Xi = 1 − Zi, are called the defiers. This complicates the analysis very much, and is
out of the scope of this course.

Example 9.4 (Becoming a Man experiment). There is a large imbalance in crimi-
nological statistics across races. This may be due to institutional factors, or maybe
due to individual choices and behaviors such as dropping out, drug uses, and enter-
ing gangs. The “Becoming a Man (BAM)” program was developed by the Chicago
NGO Youth Guidance to see if we can intervene in the individual behavior aspect
and improve minorities’ crime participation.3 In 2009, 2,740 minority youths were
randomly assigned to the control and the treatment groups. Of them, 1,473 received
an invitation to the program; 1,267 did not. Of the invited youths, 41.6% complied
and participated in the program (Figure 9.6). [HSG+17] analyze this dataset to
estimate the causal effect of the program on the subsequent school attendance and

3For an example of the program activity, see [HSG+17, p. 3].
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Table 9.4. Becoming a Man experiment [HSG+17, Tables IV and
VI].

Outcome ITT LATE

School engagement 0.057* ( 0.022) 0.137* ( 0.051)
Graduated on time 0.030 ( 0.016) 0.071 ( 0.038)
Total arrests per year −0.078 ( 0.046) −0.187 ( 0.109)

Violent −0.035* ( 0.017) −0.083* ( 0.039)
Property 0.005 ( 0.013) 0.012 ( 0.030)
Drug 0.001 ( 0.018) 0.003 ( 0.042)
Other −0.050 ( 0.027) −0.119 ( 0.065)

crime statistics of these youths (Table 9.4). For example, they estimate ITT on the
index for school engagement index at 0.0569, and then divides it by 0.416 to obtain
LATE at 0.1367, which is found significant. They also find that participation in the
program has significantly decreased the yearly arrests for violent crimes by −0.0829,
which translates to a decrease by 45–50% relative to compliers who did not participate
in the program.

Example 9.5 (Vietnam draft lottery). National defense is of great importance, and
there is a consensus that veterans should be adequately compensated for their service.
What exactly constitutes an adequate compensation is more contentious. [Ang90]
investigates the causal effect of attending the war on veterans’ lifetime earnings.
Technically, this is a causal inference with observational data, but the situation is
very close to a controlled experiment. In 1970–2, men of ages 19–26 were randomly
drafted based on their birthdays. Once they were drafted, they went through the
physical examination and the mental aptitude test. Those who passed both were sent
to Vietnam; those who failed either were not. Among those who were not eligible,
some of them volunteered to enlist; of them, those who passed both tests were sent
to Vietnam. This situation can be analyzed by the same method as experiments
with random eligibility. To see this, observe that men of eligible ages are split into
three groups: (1) those who would volunteer and could pass the tests, (2) those who
would not volunteer but could pass the tests, and (3) those who could not pass the
tests (Figure 9.7). The first group would go to Vietnam regardless of whether they
are drafted, and the third groups would not go to Vietnam regardless. The second
group, however, would go to Vietnam if and only if they are drafted. This means that
their veteran status (the treatment) was assigned randomly. Therefore, a similar ratio
estimator can estimate LATE for these individuals. The author first estimates ITT,
the causal effect of being draft-eligible, on the income at the age of 31, to be −$487.8
for the 1950 cohort. This means that being drafted and taking the tests, regardless
of passing or failing, had decreased their income 10 years later for about $500 a year.
The standard error was $237.6 and it was significant. Next, the author estimates
that the proportion of those who would not volunteer but could pass the tests to be
15.94%, which is the difference of the proportion of draft-eligible individuals going
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Figure 9.7. Drafted individuals went to Vietnam if they passed the
medical exam and mental aptitude test. Draft-ineligible individuals
went to Vietnam if they volunteered and passed both tests. Therefore,
for those who would not have volunteered but could pass the tests,
service was randomly assigned.

Table 9.5. Causal effect of military service on income at age 31
[Ang90, Tables 2 and 3].

Cohort Year ITT [$/yr] P (Pass) P (Vol. and Pass) LATE [$/yr]

1950 1981 −487.8* 0.3527 0.1933 −3,060.2*
( 237.6) (0.0325) (0.0233) ( 1,490.6)

1951 1982 −278.5 0.2831 0.1468 −2,043.3
( 264.1) (0.0390) (0.0180) ( 1,937.6)

1952 1983 −500.0 0.2310 0.1257 −4,748.3
( 294.7) (0.0473) (0.0146) ( 2,798.7)

to Vietnam, 35.27%, and the proportion of draft-ineligible ones going to Vietnam,
19.33%. Dividing ITT with this number, the author obtains −$3,060.2 as the LATE
of going to Vietnam on the income 10 years later, which is about 15% less than those
who did not attend the war.

9.4. The Problem of Endogeneity

9.4.1. Observational data and causality. Although an experiment is the
golden formula for causal inference, it is not always possible when it comes to social
science; experiments may be too costly, infeasible, or unethical to run. This motivates
carrying out causal inference with observational data, which can be obtained much
easier and quicker with much lower costs. To develop a framework for causality in ob-
servational studies, it is essential to distinguish the two types of regression equations:
predictive equations and causal equations.

Suppose that an economist is interested in uncovering the causal relationship of
school budgets on graduation rates, which might provide a basis for an education
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policy reform. Let yi be the graduation rate of high school i and xi be the budget
allocated to this school. She collects the data from many districts and runs the
regression

yi = γ0 + γ1xi + ui

and finds that γ̂1 is significantly positive. Can she conclude that increasing the budget
for a school with a currently low graduation rate will boost up its graduation rate?
Not really. It may be that low-budget schools have low budgets because of some
underlying socioeconomic environments in the corresponding districts, which also are
leading to low graduation rates. If this is the primary cause of the positive γ̂1, then
allocating larger budgets on low-budget schools would be a futile effort in increasing
the graduation rates. Therefore, the above equation is different from what would
actually happen when we intervene in the school budget,

yi = β0 + β1xi + εi,

where β1 represents the causal effect of changing the budget on the graduation rate
of school i. It is important to distinguish the two, so we call the first equation the
predictive equation and the second the causal equation.

In this example, the problem comes from the fact that the economist is interested
in the causal equation while she estimated the predictive equation. Don’t think that
the predictive equation is “wrong” by any means; it just serves a different purpose.
For example, if you are betting money on the graduation rate of a school randomly
picked, and you are only given the information of the budget, then you would want
to adjust your bet according to γ1, not β1. In this sense, the predictive equation is
useful when prediction from the same population is of concern. Meanwhile, if you
are negotiating the budget to improve the graduation rate, then you would want to
make your argument based on β1. In other words, the causal equation is useful when
intervention is of concern.4

But then, when she ran the regression, why did she end up estimating the predic-
tive equation and not the causal one? The key is in the data she used. Recall that
the linear regression always estimates the best predictor line so that the regressors
and the error term are uncorrelated in the population (Section 7.1.2). But such a
predictor is only best if you use it to predict the outcome for the same population.
Since the data she used came from an observational population, her regression line is
best for predicting a new set of data that, too, comes from an observational popula-
tion. Yet, her intention was in predicting the outcome of intervention, which distorts
the population distribution. Mathematically put, the xi in the observational data
is uncorrelated with ui in the predictive equation but may not be so with εi in the
causal equation.

This problem—when we have a causal equation in mind but xi in our dataset
is correlated with εi in the causal equation—is called endogeneity. This variable xi

is called the endogenous variable. In turn, a variable that is uncorrelated with εi

4Intervention is not the only reason to care about causality. When a litigation consulting firm
makes a case for an appropriate compensation for discrimination, the causal equation is of interest
for attributive purposes.
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Figure 9.8. Measurement error and simultaneity.

is called exogenous. Note that this definition depends on other regressors included
in the regression; with additional regressors, an endogenous variable may become
exogenous.

On the other hand, suppose that we have a dataset from an experiment in which
the budgets are assigned randomly (although such an experiment would be obviously
infeasible). Then, linear regression estimates the best linear predictor in that exper-
imental population. In particular, the distribution of “everything else” is the same
across all budgets. In this case, the predictive equation for this population coincides
with the causal equation, and she would end up estimating the causal effect.

The goal of causal inference with observational data is, therefore, to find the
variation in the observational data that is as if an experiment is carried out, whereby
the predictive equation coincides with the causal equation.

9.4.2. Sources of endogeneity. Endogeneity can arise in various ways. Below
are some notable channels. Note that all these are mathematically equivalent, and
some authors use “omitted variable bias” as a synonym for endogeneity.

Example 9.6 (Omitted variable bias). The omitted variable bias takes place when
there is a variable w that causes both x and y, and you miss w in the regression
(recall Figure 7.9). In marketing, there is a myth that growing the market share is
key to profitability [NM18, Chapter 7]. This is based on the observation that there
is a positive correlation between the market share x and profitability y, that is, β1 in
y = β0 + β1x + ε is positive. However, some research shows that this relation is not
causal, and that some underlying factors such as a competitive advantage w lead to
both the high market share and profitability; when we run y = β0 + β1x + β2w + ε,
the coefficient β1 is hardly positive. Thus, aiming solely for the market share (and
not improving the competitive advantage) hardly contributes to profitability.
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Example 9.7 (Measurement error). It has long been known that the responses in
economic surveys contain some extent of errors [MS83]. For example, work experi-
ence may be measured in years but not in months or days; self-reported income may
or may not include taxes. This is known as the measurement error or the errors in
variables. In particular, suppose that the equation of interest is y = β0 + β1x

∗ + ε,
but x∗ is not measured; instead, we measure x = x∗ + u with some noise u. Then,
γ1 in the regression y = γ0 + γ1x+ ε is known to underestimate β1 toward the origin
(Figure 9.8a). This is known as regression dilution or the attenuation bias [Gre18,
Section 8.8]. This is similar to the omitted variable bias in the sense that x∗ is not
observed, but in this case the causal effect of interest is x∗ → y. Since the bias is
toward zero, if γ̂1 is significant, then it is a stronger evidence against H0 : β1 = 0.

Example 9.8 (Simultaneity). Simultaneity is a situation in which x causes y and
y causes x. Demand estimation is a good example of this [Hay00, Section 3.1].
The demand function is a map from the price to the quantity demanded. However,
the observed price and quantity are the intersection of the demand curve and the
supply curve, so regressing the observed quantity on the observed price estimates
neither the demand nor the supply function (Figure 9.8b). In fact, the instrumental
variable method to be explained in Section 9.5.2 was originally invented to estimate
the demand and supply curves properly [ST03].

Example 9.9 (Reverse causality). The reverse causality is when y causes x. It is
sometimes believed that formula-fed infants grow more rapidly than breastfed infants.
[KMDP11] document that infant feeding choices are affected by the infants’ health;
small infants are more likely to be subsequently weaned or to have discontinued
exclusive breastfeeding, and large infants are less likely to experience these feeding
changes. If small infants are more likely to experience natural rapid growth, the
causality of feeding choices and the growth speed may be reverse.

Example 9.10 (Self-selection). Self-selection occurs when a particular combination
of y and x is selectively observed. For example, individual workers decide on their
occupations taking into account their own skill sets and fits. So, if a pianist switches
to an accountant, it is not reasonable to foresee a salary raise equal to the difference
of the average income of an accountant and that of a pianist; that is, the observed
relationship of average income and occupation is not causal. This problem is explicitly
discussed by [Roy51], and the economic model that describes this selection process
is known as the Roy model in labor economics.

9.4.3. Is there “included variable bias?” As discussed in Section 9.3.1, in-
cluding additional covariates uncorrelated with the current regressors xi does not
change the coefficient. Meanwhile, including a variable that is correlated with xi

would change the coefficient on xi. In economics, causality is considered on a ceteris
paribus basis—what happens (or would have happened) had xi been altered but all
other factors unchanged—so if there is any covariate that is correlated with xi, we
would rather want to include it. In this sense, the “included variable bias” is not an
issue.
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Figure 9.9. Two solutions to endogeneity. The problematic part is
the intersection of x and causal ε.

In law, on the other hand, we may occasionally be interested in discovering an
indirect (confounding) effect on a mutatis mutandis basis—how the change in xi

affects other variables that further affect yi. For example, the disparate impact studies
examine how race-neutral policies affect different races disproportionately through
various channels [Ayr05]. In such cases, the included variable bias can be a major
concern.

9.5. Causal Inference with Observational Data

There are two solutions to the endogeneity problem. Write the causal equation of
interest as

yi = β0 + β1xi + εi,

where β1 captures the causal effect of xi on yi. The problem is that in the obser-
vational data, the variable xi is correlated with εi, that is, E[xiεi] ̸= 0. This εi

can be decomposed into two parts: the component that is correlated with xi and
the remainder. The correlated component is the problematic part, and is called the
confounder. Some confounders may be observable while some others are not. The
omitted variables are examples of unobservable confounders.

The first solution, which we call the control variable approach, is to shave off the
error term εi so that it becomes uncorrelated with xi (Figure 9.9a). This is done
by adding the confounding variables that absorb the endogeneity altogether. This
solution is possible when there is no unobservable confounder. Likewise, xi can be
decomposed into the part that is correlated with εi and the remainder. The second
solution, the instrumental variable approach, is to scrape off xi so that it becomes
uncorrelated with εi (Figure 9.9b). This is done by projecting xi onto an external
variation zi that is only correlated with xi. This solution is viable when we observe a
“pure” variation of xi that is uncorrelated with εi. In the end, we will see that these
approaches are mere flip sides of the same coin.

9.5.1. Control variable approach. Suppose we are interested in the causal
effect of attending a charter school on academic achievements. From the education
policy perspective, an unbiased assessment of charter schools is important as they are
publicly funded and granted a large extent of freedom in education. Let yi be the test



9.5. CAUSAL INFERENCE WITH OBSERVATIONAL DATA 131

score of student i, used as a proxy for academic achievements, and xi be the number
of years student i has attended a charter school. If we retrieve the observational data
and run the regression

yi = β0 + β1xi + εi,

then β1 captures not only the causal effect of charter schools but all other factors that
produce correlation between charter attendance and the test score. For example, the
parents who think of sending their children to charter schools may be inherently edu-
cation-conscious, and their children may have gained more educational opportunities
outside of school. Then, it creates positive correlation between yi and xi even in the
absence of the causal effect of attending a charter school. Also, some public schools
serve a student body of disproportionately more minorities, and some of these mi-
norities may be in disadvantaged environments. Then, it may also add to non-causal
correlation between yi and xi.

If we observe these variables, including them in the regression changes the coef-
ficient of xi. Suppose that we observe how education-conscious the parents of i are
and whether i is a minority; let wi denote a vector of these variables. If we run

yi = β0 + β1xi + w′
iβ2 + εi,

then β1 is the (causal and non-causal) effect of xi on yi fixing the variable wi at the
same level (recall the discussion in Section 7.1.2). In other words, β1 is the average of
the differences of students in charter schools and in other public schools in which the
comparison is made minority to minority, majority to majority, education-conscious
parents to education-conscious parents, etc. Thus, if we include all of those non-
causal channels in the regression (which refines the error term), we will eventually be
left with the pure causal effect of xi in β1. This is the idea behind the control variable
approach. The vector wi is the set of control variables, and this regression is said to
control for wi.

As is clear from the discussion, the challenge of this approach is that we need to
observe all sources of endogeneity and need to know the correct functional form of
how these covariates affect yi. The assumption that we observe the entire confounding
factor is called the selection on observables or conditional independence assumption.
On the flip side, an advantage of this method is that what is held fixed is very clear;
we control for the covariates and only the covariates.

[AAD+11, Table X] use this approach to estimate the effect of a charter school
on academic achievements. Let TestScorei be the test score of student i on either
English or Math and YearsInCharteri be the time student i has spent in a charter
school measured in years. Then, they run the regression [AAD+11, eq. (11)]

TestScorei = β0 + β1YearsInCharteri + w′
iβ2 + εi,

where wi is a vector of covariates that includes demographic controls such as ethnicity,
gender, English proficiency, whether the student is receiving free/reduced price lunch,
the interaction of gender and ethnicity, and the baseline test scores before attending
(or choosing not to attend) the charter schools.
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Table 9.6. The effect of charter schools estimated by the control vari-
able approach [AAD+11, Table X]. The test scores are measured in
the units of standard deviations.

Outcome
English [σ] Math [σ]

Years in charter 0.174* 0.316*
(0.020) (0.024)

N 40,852 45,035

In reference to the above discussion, the baseline test scores may control for the
education-consciousness of the parents since such parents would have given their chil-
dren additional education opportunities well before sending them to charter schools.

Table 9.6 gives the estimates of β1 for English and Math. If we buy that these
control variables are the only possible channels that can induce non-causal correlation
between the test scores and charter attendance, we can interpret Table 9.6 as the
evidence that one year of attendance to a charter school increased the English test
scores by 0.174 standard deviations and the math scores by 0.316 standard deviations
on average for the students included in the regression.

On the other hand, if we believe that there are also other channels that can
induce non-causal correlation, we can interpret that the coefficients are the total
effects including these channels. For example, if we believe that early childhood
education affects not only the level but also the speed at which children learn things
in later ages, then having students with more preschool education at charter schools
than at other public schools can create a spurious positive correlation between charter
attendance and test scores. In this case, 0.174 refers to the causal effect of attending
a charter school plus the effect of having more preschool education on the English
test scores.

Example 9.11 (Search engine marketing). Search engines sell their ad spaces based
on search keywords. It is of interest to potential advertisers to know which keywords
they should buy to maximize the ad effect. Particularly, eBay used to pay for the
ads when users searched for keywords containing “eBay.” As a result, a user who
searched for keywords such as “eBay shoes” saw an ad that led to eBay’s website as
well as the natural search result that also led to their website. Is it meaningful to
show the ad when the users’ intention seems already to reach their website? To see
this, eBay stopped paying MSN (Bing) for the ad for “eBay”-containing keywords in
March 2012, while they kept the ad on Google. [BNT15] estimate the causal effect
of terminating the ads for brand names using the difference-in-differences (DID)
method. To understand this method, divide the data into four quadrants: (1) Google
vs. Bing and (2) before vs. after halting the ads (Figure 9.10). First, consider the
naive regression yit = β0 + β1xit + εit, where yit is the logarithm of the number of
clicks originating from the search engine i at time t, separately for each search engine
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Google Brand ads on

Bing Brand ads on Brand ads off

March 2012

Contaminated
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idiosyncratic difference

Figure 9.10. Comparison between Google and Bing after March 2012
captures unwanted idiosyncratic difference. Comparison of Bing before
and after March 2012 captures unwanted time trend. Difference-in-
differences eliminates this contamination under parallel trend.

Figure 9.11. Click-traffic counts for Google and MSN Bing for the
duration of the experiment [BNT15, Figure 2]. “Natural” refers to
clicks through natural search results, and “Paid” through ads.

(Table 9.7). The authors find a significant negative effect for Bing, β̂1 = −0.056,
which means that eBay experienced a significant drop in its traffic after halting the
ads. However, the same regression for Google also yields a significant negative effect,
β̂1 = −0.032. This indicates that the negative effect for Bing might not be due to
stopping the ads, but something else that affected the overall traffic for eBay. The
idea behind DID is to adjust Bing’s traffic using Google’s. If some eBay-specific event
happened that decreased the overall traffic for eBay, then what happened to Google’s
traffic (traffic difference y12 −y11) may be what would have happened to Bing’s traffic
had eBay kept the ads on Bing (parallel trend assumption). Then, the traffic that
Bing would have experienced had it kept the ads can be estimated as y21 +(y12 −y11).
Then, the actual traffic minus this counterfactual difference, (y22 −y21)−(y12 −y11), is
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Table 9.7. Naive regression and difference-in-differences [BNT15,
Table A.I]. The outcome variable is the log click counts. The indi-
cator After is replaced with various fixed effects for DID.

Google Bing
Naive Naive DID

After −0.032* −0.056* —
( 0.012) ( 0.009) —

Ads off −0.005
( 0.018)

Google 5.088
(10.06 )

Yahoo! 1.38
( 5.66 )

Constant 14.34 12.82 11.33
( 0.006) ( 0.006) ( 5.66 )

N 120 118 180

the estimated traffic on Bing that is due to halting the ads.5 This estimator takes the
form of taking a difference of the two differences, hence the name. Mathematically,
this is equivalent to running the regression

yit = β0 + β1AdsOffi + β2Afteri + β3Googlei + εit.

The terms β2Afteri and β3Googlei are called the fixed effects, and absorbs the idiosyn-
cratic effects for the post-experiment period and for Google, respectively. The parallel
trend assumption implies that these fixed effects capture all sources of endogeneity
regarding this ad effect. The actual movements of log clicks are shown in Figure 9.11.
The authors find that the ad effect is now insignificant at β̂1 = −0.005,6 concluding
that “the evidence strongly supports the intuitive notion that for brand keywords,
natural search is close to a perfect substitute for paid search, making brand keyword
SEM ineffective for short-term sales.” eBay subsequently stopped paying for brand
keywords on other platforms as well.

Example 9.12 (The Fox News effect). According to the measure constructed by
[GM05], most media outlets are biased in some sense (Figure 9.12). Then, does
media bias affect voting? [DK07] use the introduction of Fox News to estimate the
effect of the availability of Fox News on conservative votes. Since Rupert Murdoch
launched Fox News in 1996, it has acquired as much audience as CNN by 2000. The

5Unless we assume that what had happened to Bing at t = 2 is what would have happened to
Google had they halted the ads on Google, we cannot say that this estimate applies also to Google.
In this sense, the target of the DID estimator is called the average treatment effect on the treated
(ATT). Here, Bing is the “treated” and Google the “control.”

6The actual regression carried out in Table 9.7 includes more fixed effects and data on Yahoo!
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Figure 9.12. The measure of media bias “adjusted Americans for
Democratic Action (ADA) score” calculated by [GM05]. The error
bars indicate marginal 95% confidence intervals assuming normality.
The dotted line is the political center defined by the authors.

authors argue that “Fox News availability in 2000 appears to be largely idiosyncratic,
conditional on a set of controls.” From there, they apply the difference-in-differences
methodology to estimate how Fox News shifted the conservative vote share in Presi-
dential elections between 1996 and 2000. Their regression equation is

GOPVoteSharei = β0 + β1Foxi + β22000i +W ′
iβ3 + εi,

where GOPVoteSharei is the Republican vote share in town i, Foxi is the indicator
of whether Fox News was available in town i, 2000i is the indicator of the election in
2000, and Wi is a set of controls including the demographic variables and the features
of the cable system. They estimated β̂1 = 0.0069 with the standard error 0.0014,
which is significant. Thus, the Republican candidate is considered to have gained
0.7% of votes due to Fox News in the available towns.

Example 9.13 (Value of connections in turbulent times). On November 21, 2008,
the news leaked that Timothy Geithner would be nominated as the U.S. Treasury
Secretary for President Obama. In the next several days, the stock prices of firms
that have connections with Geithner, such as JPMorgan Chase, have surged relative
to the stocks of firms with no connections, such as Charles Schwab. On January 13,
2009, Geithner’s unexpected tax issues were exposed. Subsequently, the Geithner-
connected firms’ stocks plunged (Figure 9.13). [AJK+16] use this to measure the
“value” of having a connection to the U.S. Treasury Secretary in the time of a crisis.
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Figure 9.13. The stock prices of JPMorgan Chase & Co. and Charles
Schwab. On November 21, 2008, the news leaked that Timothy Geith-
ner would be nominated as the U.S. Treasury Secretary. On January
13, 2009, Geithner’s unexpected tax issues were exposed.

They consider the regression

AbnormalReturnsi = β0 + β1GeithnerConnectionsi +W ′
iβ2 + εi

in the span of ten days before and after the events. The control variable Wi includes
firm characteristics such as the firm size, profitability, and leverage. Assuming that
the news were unexpected to the market and Wi absorbs imbalance between firms
with and without connections, β1 measures the causal effect of having connections to
the U.S. Treasury Secretary on the stock returns of a financial institution during a
financial crisis. The authors find that β̂1 is significant and positive at 0.0073.

9.5.2. Instrumental variable approach. The instrumental variable method
is a generalization of the Wald estimator we saw in Section 9.3.2. Recall that the
Wald estimator finds the subpopulation for which the assignment of the treatment
was random. Similarly for the observational data, we look for the variation that
randomly changed the xi of which we want the causal effect on yi.

Let us continue on the working example of the charter school effect. Many charter
schools receive more applications than they can admit, and as a result, they hold a
lottery. Then, the lottery is a variation that affects the charter attendance xi but does
not affect other confounding variables; e.g., the minority status of the students or the
wealthiness of their parents. Therefore, among those students who went through the
lottery—be they admitted or not—the situation is as if an experiment was conducted
and they were randomly admitted. This type of solution is possible when there is an
external variation z, called the instrument or the instrumental variable, that is only
correlated with x (Figure 9.14).

In the instrumental variable method, we first extract the variation of xi that came
from such an exogenous shock only. This is done by the following regression, called
the first-stage equation,

xi = π0 + π1zi + vi,
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Instrument z Treatment x

Confounder w

Outcome y
π β

z ⊥ w

Figure 9.14. Causal graph for the instrumental variable method.
Even if w is unobservable, the causal effect β of x on y can be found if
there is a variable z that affects x but not w.

where zi is the indicator of whether the student i won the lottery. With this, we can
“predict” xi using only the information of zi by

x̂i := π̂0 + π̂1zi.

While this is clearly correlated with xi, this is not correlated with the confounding
variables since this prediction only uses the information of zi, which has no impli-
cations on variables other than xi. Mathematically, substitute xi = x̂i + v̂i into the
original (second-stage) equation

yi = β0 + β1(x̂i + v̂i) + εi = β0 + β1x̂i + (β1v̂i + εi).
The last term in the parentheses is the padded error term as a result of substituting
xi, and is uncorrelated with zi and hence with x̂i. Therefore, by regressing yi on x̂i,
we find an estimator β̂1 of our target causal effect. The condition for an instrument
to be valid is, therefore, that it is correlated with xi (so that x̂i is meaningful at all)
and it is not correlated with εi. The first condition is verifiable while the second is
not.7

In sum, the instrumental variable method proceeds in two steps. First, regress the
endogenous regressor xi on the instrument zi. Second, regress the dependent variable
yi on the fitted regressor x̂i. The estimator β̂1 thusly constructed is called the two-
stage least squares (2SLS or TSLS) estimator. Note that we can also include other
covariates in this method; just make sure to include them in both of the first- and
second-stage equations.

[AAD+11, Table IV] estimate the effect of a charter school using this method
(Table 9.8). As stated above, they use the lottery as an instrument for the time
spent in charter schools. They find the causal effect estimates β̂1 quite close to the
ones found by the control variable approach and state that “the observational study
design does a good job of controlling for selection bias in the evaluation of charter
effects (or that there is not much selection bias in the first place).” It is, however,
rare that the same effect be estimated using both methods. In many cases, we have
some okayish instruments and not-too-many control variables, so we combine the two
to boost credibility.

7If there is more than one instrument for one endogenous variable, we can test if any one of the
instruments is invalid.
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Table 9.8. The effect of charter schools estimated by the two ap-
proaches [AAD+11, Tables IV and X]. The test scores are measured
in the units of standard deviations.

Control variable Instrumental variable
English [σ] Math [σ] English [σ] Math [σ]

Years in charter 0.174* 0.316* 0.198* 0.359*
(0.020) (0.024) (0.047) (0.048)

N 40,852 45,035 3,101 3,258

The advantage of the instrumental variable approach is that we need only one
instrument for one endogenous regressor. This is in contrast to the control variable
approach requiring all sources of endogeneity be included. However, the major dis-
advantage, too, is that we have to find at least one instrument. It is indeed quite
challenging to find even one valid instrument that is convincing to many. For this
reason, finding a neat instrument can sometimes even change the course of the liter-
ature; in economics, there are a few “well-known” instruments that are given names
and frequently referred to, e.g., the BLP instrument, the Bartik instrument, the twin
birth instrument, and the quarter-of-birth instrument.
Example 9.14 (Rainfall for demand estimation). One of the most famous examples
of an instrument in economics is rainfall. As discussed in Example 9.8, estimation
of the demand curve suffers from the endogeneity of the price. Consider the demand
estimation of coffee beans in the United States. The quantity and price of the coffee
beans is determined by a system of demand and supply equations in the U.S., so
a simple regression of the quantity on the price does not find the demand curve or
the supply curve. However, most coffee beans are produced outside of the country,
e.g., in South America. Thus, the rainfall in the coffee production locations in South
America would affect the supply curve while staying independent of the demand for
coffee in the U.S. From a standpoint of the demand curve, therefore, the rainfall in
South America acts as an instrument that affects the price xi but not the confounding
factors εi; thereby, it is as if the price-changing experiment was carried out randomly
to North American consumers. It may at first seem somewhat counterintuitive that,
in order to estimate the demand curve, we need a variation that does not affect the
demand curve. However, pondering over the intuition above, it should eventually
come natural to you.
Example 9.15 (Class size and test scores). There is an argument that education
is more effective in small class sizes as teachers can pay more attention to each stu-
dent. However, its implementation is costly to the public and hence requires scientific
evidence. Therefore, investigating whether and how much smaller class sizes help
improve education quality is an important economic question to answer. Medieval
philosopher Maimonides once said, “If there are more than 40 [children], two teachers
must be appointed.” Israel keeps up to his words and sets the maximum of 40 pupils
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Figure 9.15. Maimonides’s rule and actual class size [AL99, Figure
I].

per class in public schools (Figure 9.15). Continuing on Example 7.5, [AL99] use this
to estimate the causal effect of class size on test scores. They argue that the class
size predicted by Maimonides’s rule is a valid instrument since most children in Israel
attend public schools and it is hard to predict which district ends up in small class
sizes. The first-stage equation is

ClassSizei = π0 + π1MaimonidesRulei +W ′
iπ2 + vi,

where ClassSizei is the actual size of class i, MaimonidesRulei is the size predicted
by Maimonides’s rule, and Wi is the vector of shool-level covariates including the
percentage of pupils with disadvantaged backgrounds. The second-stage equation is

Readingi = β0 + β1ClassSizei +W ′
iβ2 + εi,

where Readingi is the average test score for class i. [AL99, Table IV] calculate that the
2SLS estimate β̂1 is −0.410 with standard error 0.113, now much larger than −0.053 in
Example 7.5. They conclude that “[t]he raw positive correlation between achievement
and class size is clearly an artifact of the association between smaller classes and the
proportion of pupils from disadvantaged backgrounds.” “The [instrumental variable]
estimates show that reducing class size induces a significant and substantial increase
in test scores for fourth and fifth graders, although not for third graders.”
Exercise 9.1 (Causal effect of studying). If I study for one more hour, how much
does my GPA improve? This is an existential concern for many students. Let yi be
the GPA of student i and xi be the average number of hours i studies per day. If
we run the regression yi = β0 + β1xi + εi, can we interpret β1 as the causal effect of
studying? If not, what confounding effects does β1 capture? [SS08] take advantage
of a unique dataset to overcome this endogeneity problem. Let zi be the indicator
of whether i’s roommate brought a video game. The authors propose to use zi as
an instrument for xi. What conditions does zi need to satisfy in order for this to
work? At Berea College, students are assigned to dorms randomly; this means that
students have no control over who their roommates will be except for their genders.
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Is this important in the validity of zi? What other control variables do you suggest
including?

9.5.3. Equivalence of the two approaches. The control variable approach
and the instrumental variable approach are two different methods that serve concep-
tually distinct situations. The first can be used when we observe granular data that
cover all sources of endogeneity; the second when we observe a delicate and peculiar
variable that affects the endogenous variable but none of the confounding variables.

Mathematically, however, the two approaches are equivalent; the 2SLS estimator
can be obtained by regressing y on x and the residual from the first stage, that is,

yi = x′
iβ + v̂′

iγ + εi.

To see this, let X = Zπ̂ + V̂ be the estimated first-stage equation and consider β̂
from the following regression

Y = Xβ + V̂ γ + E .

By Theorem 7.11, β̂ satisfies

β̂ = (X ′MV̂X)−1X ′MV̂ Y = [(MV̂X)′(MV̂X)]−1(MV̂X)′Y

for idempotent MV̂ = I − V̂ (V̂ ′V̂ )−1V̂ ′. Observe that

MV̂X = [I − V̂ (V̂ ′V̂ )−1V̂ ′](Zπ̂ + V̂ ) = Zπ̂ = X̂

since V̂ ′Z = 0. Therefore, we obtain

β̂ = (X̂ ′X̂)−1X̂ ′Y,

which is numerically identical to the 2SLS estimator. Nevertheless, the estimator
thusly obtained is sometimes distinguished by the name two-stage residual inclusion
(2SRI) estimator to highlight the conceptual difference. One advantage of the 2SRI
formulation is that it is easily generalizable to nonlinear models such as quantile
regression. Such generalization is called the control function method.

This exercise reveals that the variation of xi orthogonal to zi acts as the control
variable that absorbs all the confounding effects. So, at the end of the day, there
is only one solution to get to the causal effects inductively—we have to identify all
sources of endogeneity, either by directly observing them or by observing a variation
orthogonal to them.

9.A. Theory of Two-Stage Least Squares

Let xi be the k-dimensional vector of regressors, which includes both endogenous
and exogenous regressors. An intercept, if included, is by construction exogenous.
Let zi be the ℓ-dimensional vector of instruments, which includes the instruments for
the endogenous part of xi as well as all exogenous regressors of xi.8 There must be
at least as many instruments as endogenous regressors, so k ≤ ℓ.

8So, the exogenous regressors act as their own instruments.
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The linear IV model is defined by the two equations{
yi = x′

iβ + εi,

x′
i = z′

iπ + v′
i,

where the first equation is called the second-stage equation and the second the first-
stage equation. The substituted equation yi = z′

iπβ + ui, for ui = εi + v′
iβ, is called

the reduced-form equation. Note that vi is a k × 1 vector as in xi and π is an ℓ × k
matrix, so the first-stage equation is a collection of k equations. If zi contains a
subvector of xi, then the corresponding part of the first-stage equation is redundant
but innocuous. Denote the dataset we have as

Y
(n×1)

:=


y1
...
yn

 , X
(n×k)

:=


x′

1
...
x′

n

 =


x11 · · · x1k
... . . . ...
xn1 · · · xnk

 , Z
(n×ℓ)

:=


z′

1
...
z′

n

 =


z11 · · · z1ℓ
... . . . ...
zn1 · · · znℓ

 .
The 2SLS estimation identifies the parameter (π, β) that satisfies E[zivi] = 0 and

E[ziεi] = 0 and proceeds in two steps.
(1) Regress x on z to obtain π̂ = (Z ′Z)−1Z ′X. Calculate the fitted values of x,

that is, X̂ = Zπ̂ = Z(Z ′Z)−1Z ′X.
(2) Regress y on x̂ to obtain β̂ = (X̂ ′X̂)−1X̂ ′Y .

The OLS estimator is a special case of this in which all regressors are assumed
exogenous, i.e., zi = xi.

9.A.1. Statistical properties. The 2SLS estimation has two essential assump-
tions (Assumptions 9.1 and 9.2).

Assumption 9.1 (Sampling assumption). {yi, xi, zi} are i.i.d. with second moments
and k ≤ ℓ. E[ziz

′
i] is invertible, E[zix

′
i] is of full row rank, and E[ε2

i ziz
′
i] exists.

Assumption 9.2 (Instrumental orthogonality). There exists β such that E[(yi −
x′

iβ)zi] = 0.

Remark 9.1. Assumption 9.2 is trivial if x and z have the same dimension.

The next assumption is not necessary but can simplify the variance formula.

Assumption 9.3 (Unconditional homoskedasticity). E[ε2
i ziz

′
i] = E[ε2

i ]E[ziz
′
i].

There are two ways to impose conditional versions of the assumptions to yield
finite-sample distributions. One is to condition on X̂ and the other on Z. We will
include the corresponding assumptions in the statements as necessary.

The first-stage coefficient is π := E[ziz
′
i]−1E[zix

′
i]. Mathematically, the parameter

of interest is defined as β := (π′E[ziz
′
i]π)−1(π′E[ziyi]). The estimator for π is simply

the OLS estimator π̂ := (Z ′Z)−1(Z ′X), and the fitted X is given by X̂ = Zπ̂.
Then, the 2SLS estimator for β is the OLS of Y on X̂, i.e., β̂ := (X̂ ′X̂)−1(X̂ ′Y ) =
[X ′Z(Z ′Z)−1Z ′X]−1[X ′Z(Z ′Z)−1Z ′Y ]. When k = ℓ, it reduces to β̂ = (Z ′X)−1(Z ′Y ),
which is sometimes called the IV estimator.
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Theorem 9.1 (Asymptotic normality). Under Assumptions 9.1 and 9.2, β̂ is con-
sistent to β and

√
n(β̂ − β)⇝ N

(
0, (π′E[ziz

′
i]π)−1(π′E[ε2

i ziz
′
i]π)(π′E[ziz

′
i]π)−1

)
.

Under Assumption 9.3, the asymptotic variance reduces to E[ε2
i ](π′E[ziz

′
i]π)−1.

Proof. Since E[zz′] is invertible and E[zx′] is of full row rank, Z ′Z is invertible
and Z ′X is of full row rank with probability approaching 1. Observe that β̂ − β =
(X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′E . Then the result follows by the LLN, CMT,
CLT (applied to 1√

n
Z ′E), and Slutsky’s lemma. The last claim is trivial. ■

Theorem 9.2 (Semiparametric efficiency). Under Assumptions 9.1 and 9.2 and ei-
ther k = ℓ or Assumption 9.3, β̂ is semiparametrically efficient.

Proof. Apply a similar argument as [vdV98, Example 25.28]. ■

Remark 9.2. Just as Remark 7.3, the validity of Theorem 9.2 depends on what as-
sumptions not to impose.

Under strong assumptions, we can derive the finite-sample distribution of 2SLS.
There are a few ways to do so and there seems no consensus as to which is canonical.
The first way is to fix the result of the first-stage regression and consider 2SLS as
a mere OLS of y on x̂. This is arguably the easiest way to get to the finite-sample
distribution, but it requires us to condition on the in-sample fitted regressors, whose
meaning is not clear in observational studies.

Proposition 9.3 (Finite-sample distribution conditional on X̂). Suppose that E |
X̂ ∼ N(0, σ2I). Then, β̂ | X̂ ∼ N(β, σ2(X̂ ′X̂)−1).

Proof. The claim is trivial given β̂ = β + (X̂ ′X̂)−1X̂ ′E . ■

Remark 9.3. Unlike Proposition 7.3, we do not have Cov(β̂, Ê | X̂) = 0 unless V̂ = 0.
Therefore, this finite-sample distribution does not lead to exact finite-sample testing.
However, major statistical software computes critical values as if the counterpart of
Proposition 7.9 holds.

We can also derive the finite-sample distribution conditional on Z by imposing
normality on the reduced-form errors (see also [Phi09]). This way we can take into
account the uncertainty from the first-stage estimation.

Proposition 9.4 (Finite-sample distribution conditional on Z). For yi = z′
iπβ + ui,

suppose that (ui, v
′
i)′ | Z follows i.i.d. N(0,Σ). Then, β̂ = (π̃′π̃)−1(π̃′γ̃) for which[

γ̃
vec(π̃)

] ∣∣∣∣∣ Z ∼ N

([
γ

vec(π)

]
, Σ ⊗ Iℓ

)
,

where Iℓ is an ℓ× ℓ identity matrix.
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Proof. Note that β̂ = [π̂′(Z ′Z)π̂]−1[π̂′(Z ′Z)γ̂] where π̂ = (Z ′Z)−1(Z ′X) and
γ̂ = (Z ′Z)−1(Z ′Y ) follow[

γ̂
vec(π̂)

] ∣∣∣∣∣ Z ∼ N

([
γ

vec(π)

]
, Σ ⊗ (Z ′Z)−1

)
by Proposition 7.3. Letting π̃ = (Z ′Z)1/2π̂ and γ̃ = (Z ′Z)1/2γ̂ proves the result. ■

Remark 9.4. If k = ℓ = 1, β̂ | Z reduces to a ratio of two normals, which is known to
have no moment.

9.A.2. Standard errors and inference. Heteroskedasticity is very well con-
sidered present in virtually any economic dataset. Therefore, it is always advisable
to use the general formula to compute the standard error, which is valid regardless of
the presence of heteroskedasticity.

Theorem 9.5 (Heteroskedasticity-robust standard error). Under Assumption 9.1
and E[∥xi∥2∥zi∥2] < ∞, (

1
n

n∑
i=1

ε̂2
i ziz

′
i

)
p−→ E[ε2

i ziz
′
i].

With Assumption 9.2, therefore,(
1
n

n∑
i=1

x̂ix̂
′
i

)−1

π̂′
(

1
n

n∑
i=1

ε̂2
i ziz

′
i

)
π̂

(
1
n

n∑
i=1

x̂ix̂
′
i

)−1

converges in probability to the asymptotic variance of β̂ in Theorem 9.1.

Proof. Note that 1
n
X̂ ′X̂ = 1

n
X ′PZPZX = 1

n
X ′Z(Z ′Z)−1Z ′X = π̂′( 1

n
Z ′Z)π̂ →p

π′E[zz′]π and π̂ →p π. Now it suffices to show 1
n

∑
ε̂2zz′ →p E[ε2zz′]. Since ε − ε̂ =

x′(β̂−β), ε̂2zz′ = ε2zz′ −2x′(β̂−β)εzz′ +[x′(β̂−β)]2zz′. First, 1
n

∑
ε2zz′ →p E[ε2zz′]

by the LLN. Second, using |x′(β̂−β)| ≤ ∥x∥∥β̂−β∥, ∥ 1
n

∑
x′(β̂−β)εzz′∥ ≲ ∥β̂−β∥ ·

1
n

∑ |ε|∥x∥∥z∥2 = OP ( 1√
n
) since E[|ε|∥x∥∥z∥2] ≤

√
E[ε2∥z∥2]E[∥x∥2∥z∥2] < ∞ by the

Cauchy–Schwarz inequality. Third, ∥ 1
n

∑[x′(β̂−β)]2zz′∥ ≲ ∥β̂−β∥2 · 1
n

∑ ∥x∥2∥z∥2 =
OP ( 1

n
). This completes the proof. ■

Meanwhile, most statistical software uses as default the following standard error
that is valid only under homoskedasticity. Despite Proposition 9.3, this time, there is
no exact finite-sample testing we can draw from this approach. The latter property
is not good enough to justify its use, however, as the assumptions have no hope to
be satisfied in economic applications.

Proposition 9.6 (Default standard error). Under Assumption 9.1,9(
1
n

n∑
i=1

ε̂2
i

)(
1
n

n∑
i=1

x̂ix̂
′
i

)−1
p−→ E[ε2

i ](E[xiz
′
i]E[ziz

′
i]−1E[zix

′
i])−1.

9For this to be a valid asymptotic variance of β̂, we need Assumptions 9.2 and 9.3.
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Exercise 9.2. Prove Proposition 9.6.

The following variant of Bessel’s correction is widely used in statistical software.
Again, justification is only for homoskedastic models.

Proposition 9.7 (Small-sample correction). Suppose that X̂ ′X̂ is invertible. If E[ε2
i |

X̂] = σ2 for some constant σ2, then

E
[

1
n− k

n∑
i=1

ε̂2
i

∣∣∣∣∣ X̂
]

= σ2.

If E[ε2
i | Z, X̂] = σ2, then

σ2A ≤ E
[

1
n− k

n∑
i=1

ε̂2
i zijzir

∣∣∣∣∣ Z, X̂
]

≤ σ2B,

where A is the average of n−k smallest elements of {zijzir}n
i=1 and B of n−k largest

elements.

Exercise 9.3. Prove Proposition 9.7 analogously to Proposition 7.7.

Remark 9.5. The difference of the robust variance and the homoskedastic variance is
(π′E[zz′]π)−1π′ Cov(ε2, zz′)π(π′E[zz′]π)−1. Therefore, if Cov(ε2, zz′) < 0, the robust
variance is smaller.

Given these, we can test hypotheses regarding β. Let

V̂ := 1
n

(
1
n

n∑
i=1

x̂ix̂
′
i

)−1

π̂′
(

1
n− k

n∑
i=1

ε̂2
i ziz

′
i

)
π̂

(
1
n

n∑
i=1

x̂ix̂
′
i

)−1

,

V̂0 := 1
n

(
1

n− k

n∑
i=1

ε̂2
i

)(
1
n

n∑
i=1

x̂ix̂
′
i

)−1

.

Theorem 9.8 (Asymptotic testing). For a full row-rank matrix R with rank r, let

tj := β̂j − βj√
V̂jj

, FR := (Rβ̂ −Rβ)′(RV̂ R′)−1(Rβ̂ −Rβ)
r

.

Under Assumptions 9.1 and 9.2 and E[∥xi∥2∥zi∥2] < ∞, tj ⇝ N(0, 1) and rFR ⇝
χ2(r).

Proof. It follows from Theorems 9.1 and 9.5. ■

We can substitute V̂ with V̂0 to replace the assumption E[∥x∥2∥z∥2] < ∞ with
Assumption 9.3. Instead of a normal or chi-square, major statistical software uses
critical values from a t- or F -distribution; however, there is no known theorem that
justifies this practice.
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